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DISSERTATION ABSTRACT

Wenqian Sun

Doctor of Philosophy

Department of Physics

August 2023

Title: On Local Mechanical Properties of Thin Pressurized Shells with Combined
Geometric and Material Anisotropies

Thin elastic shells are ubiquitous in nature. Indentation measurements (i.e.,

poking) provide a useful way for probing mechanical properties of these shell

structures. While spherical and cylindrical shells made of isotropic materials are

well studied, many shells in nature have geometric anisotropy (e.g., ellipsoidal pollen

grains) and/or material anisotropy (e.g., cells that have special growth directions),

and mechanics of these shells are relatively less understood. I will present some

new insights on indentation responses and buckling pressure of shells with geometric

and material anisotropy using the shallow-shell theory. First, I will describe the

indentation stiffness of pressurized ellipsoidal and cylindrical elastic shells that are

made of isotropic materials. We are able to derive a closed form for the indentation

stiffness of shells with arbitrary asphericity and internal pressure. Our results

provide theoretical support for previous scaling and numerical results on the stiffness

of ellipsoids and allow us to isolate the distinct contributions of geometry and
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pressure-induced stresses on shell elasticity. I will then add the effects of material

orthotropy, which assigns different elastic properties along orthogonal directions.

For a commonly used model of orthotropy, we find a simple rescaling transformation

that can effectively map a rectilinearly orthotropic shallow shell to an isotropic one

with a different local geometry. With the rescaling transformation, we obtain new

analytical insights for indentation responses and buckling of orthotropic shells. Our

results provide a new perspective on how isotropic and orthotropic materials are

related, isolate the effect of material orthotropy on shell elasticity, and can provide

experimentalists with a means to analyze the internal pressure of biological structures

that are made of orthotropic materials using atomic force microscopes.

This dissertation contains previously published as well as unpublished co-

authored materials.
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CHAPTER I

INTRODUCTION

1.1 Shells and where to find them

Shell structures are ubiquitous in our daily life, e.g., baseball hats, spoons,

tents and cars. Basically, any thin curved object can be categorized as a shell1.

Mathematically, shells are two-dimensional curved surfaces with a finite thickness

which is much smaller than the surface length scale.

Shells have many useful properties. When properly designed, even very thin shells

can bear large load [6]. This high efficiency of load-carrying behavior is one of the

key factors why shells are widely used in aeronautical and marine engineering, such

as aircraft, ships and submarines, where light weight is essential [6, 7]. In another

aspect, because of their high strength and ability to enclose volume, shell structures

are also commonly used in civil and architectural engineering; familiar examples are

pressure vessels, water tanks and church domes [6, 7, 8].

One can also find shells in nature. As a macroscopic example, crustaceans have

the instinctive wisdom of accumulating calcium carbonate over their lifetimes to build

up and strengthen their shells, protecting themselves against their natural enemies.

In the microscopic level, most of biological cells can be regarded as living shells;

their shell structures isolate their cell contents and enable biochemical substance

exchanges with the outside environment. It is known that mechanical properties of

such microscopic shell structures play a crucial role in processes such as intracellular

transport and cell division [2].

1I used the word “shell” here in a general sense which includes as a special case membranes
(easily bendable shells [5]).

1



(a) Spoon. (b) Church dome. (c) Crab.

FIGURE 1.1. Some shells in daily life, engineering and nature.

1.2 Cells

In fact, cell mechanics by itself is a fascinating subject. In some sense, a cell wall

is the most delicate shell structure in nature as its design involves both geometric

and material anisotropies. As a first example, after being released from the anther

of a flower, a pollen grain is able to fold onto itself to prevent dehydration; it has

been shown that this ability is closely related to the ellipsoidal structure of the

pollen grain [9]. As a second example, plant cell walls can be thought of as made

of composite materials that in general are not isotropic [10]. A composite material

consists of a base material in which high-strength filaments or fibers are embedded;

as a consequence, the composite material is often stronger than the base material [8].

This material anisotropy helps a plant cell to withstand the large force generated by

the turgor pressure (a high internal hydrostatic pressure due to cell contents) and

contributes to the anisotropic expansion of a plant cell [11]. While the elasticity of

thin isotropic spherical and cylindrical shells is well understood, there is less known

about the mechanical properties of shells with geometric and material anisotropies.
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My thesis will advance our understanding of thin shells with anisotropies, including

the effects of stochastic fluctuations which are ubiquitous in living cells.

1.3 Previous Studies on Indentation Response

1.3.1 Spheres.

Around 1946, Reissner [12] first considered the problem for spherical shells when

working on a project on the subject of load concentrations on shallow spherical

domes. He derived analytical expressions for the indentation stiffness in the absence

of pressure by exactly solving the governing equilibrium equations. Two groups of

researchers, Pogorelov [13] and Landau and Lifshitz [5], later separately came up

with simple qualitative arguments for the same problem. Their approaches were

able to give the correct dependence on shell radius and thickness and illuminated

the origin of shells’ geometric rigidity: because of curvature, doubly-curved shells

cannot stretch without bending2.

The indentation stiffness of pressurized spherical shells remains unknown until

recent years. In the year of 2012, Vella and collaborators [14] first derived an

analytical expression for the indentation stiffness of internally-pressurized spherical

shells; the result was subsequently generalized to external pressures by my

advisor [15].

2This is an implication of the Gauss’ Theorema Egregium which in the simplest sense states
that the Gaussian curvature of a surface depends on its metric.

3



1.3.2 Cylinders.

The indentation stiffness of cylinders at zero pressure was first studied by

Yuan [16] in 1946 and got revisited recently by de Pablo et al. in the study of

microtubules [2]. The pressurized case in general has not been explored.

1.3.3 Ellipsoids.

1.4 Thesis Outline

The rest of this thesis is structured as follows. In Chapter II, we study effects

of geometry and pressure-induced stresses on indentation stiffness of ellipsoidal and

cylindrical elastic shells that are made of an isotropic material. We show that

the linear indentation response of these shells reduces to a single integral with

two dimensionless parameters that encode asphericity and pressure. We are able

to characterize contributions of geometry and pressure separately by analytically

evaluating the integral in different limits and identifying the relevant length scale

parameter. We find that at low pressures, the indentation stiffness is positively

related to a shell’s local Gaussian curvature, while in the high-pressure limit, the

relevant scale is a geometric quantity that arises from the second stress invariant (i.e.,

determinant of the stress tensor). In Chapter III, we move one step further toward

realistic cells by considering material orthotropy. We study shell sections for which

the material orthotropy directions match the principal curvature directions. We find

a coordinate transformation, which is termed the rescaling transformation, under

which such an orthotropic shell section becomes effectively isotropic with a different

local geometry. Applying the rescaling transformation on known isotropic results,

we derive exact expressions for the buckling pressure as well as the linear indentation

4



response of orthotropic cylinders and general ellipsoids of revolution, which we verify

against numerical simulations. Our analysis disentangles the separate contributions

of geometric and material anisotropies to shell rigidity. In particular, we identify

the geometric mean of orthotropic elastic constants as the key quantifier of shell

stiffness, playing a role akin to the Gaussian curvature which captures the geometric

stiffness contribution. The theme of Chapter IV is how active fluctuations affect

mechanical properties of an elastic system. We shift focus from shells to nonlinear

Euler-Bernoulli beams that have a lower spatial dimension, which simplifies our

analysis but conveys the same physics. We study how a controlled external load

which varies rapidly over the entire beam (i.e., all Fourier components of the load have

short wavelength compared to the beam length) affect the beam’s buckling behavior.

Our preliminary result shows that for loads that have a single Fourier component,

the beam’s equilibrium configurations are described by Mathieu’s functions, which

are solutions to Mathieu’s differential equation, as opposite to sinusoidal functions in

linear Euler buckling theory; and the buckling loads are related to Floquet exponents.

In the final chapter, Chapter V, we briefly summarize our main results and suggest

future research directions.
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CHAPTER II

INDENTATION STIFFNESS OF ISOTROPIC SPHEROIDAL AND

CYLINDRICAL SHELLS

2.1 Introduction

Thin curved shells are ubiquitous structures in nature and technology. Their

curvature inextricably links bending and stretching deformations, making them stiffer

than flat plates of the same thickness and material—a phenomenon termed geometric

rigidity [17]. The ability of closed shells to maintain a pressure difference between

their interior and the environment also impacts their load-bearing properties, as

is apparent from our everyday experience with balloons. The interplay of elasticity,

geometry, and pressure is crucial to our understanding of mechanical structures across

a wide range of length scales, from viral capsids [18] to reactor pressure vessels [19].

Indentation—gauging the deformation of a structure in response to a localized

force—is a simple yet powerful tool for evaluating the mechanical properties of myriad

structures [20], including shells. Connecting shell indentation response to material

properties and shape provides fundamental insight into geometric rigidity [1, 14,

21, 22], and is also of practical importance in evaluating the material properties of

artificial [23, 24] and biological [3, 18, 25, 26] shell-like structures. Although the

general relation between indentation force and deflection is nonlinear and depends

strongly on shell geometry, at small forces a linear regime can be identified in which

the indentation force is proportional to the inward displacement. The constant of

proportionality quantifies the indentation stiffness of the shell, a metric which can

be compared across geometries and size scales. While theoretical analysis of the
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indentation stiffness of an unpressurized spherical shell dates back to the 1940s [12],

few analytical results are available for other cases of interest. For cylinders, the

indentation stiffness is known in the unpressurized case [2, 27], and in the high-

pressure limit ignoring bending rigidity [3, 25]. An analytical expression for the

indentation stiffness of internally-pressurized spherical shells was derived in Ref. 14,

and was subsequently generalized to external pressures [15].

For ellipsoids, a major advance was achieved in back-to-back experimental [22]

and theoretical [1] works reported in 2012. Reference 22 proposed a form

for the indentation stiffness of pressurized ellipsoids by analogy with known

results for spheres, which was tested against experiments. Reference 1 used a

perturbative analysis to obtain analytical results for the stiffness of nearly-spherical

ellipsoidal shells, and combined this analysis with simulation results and physical

scaling arguments to propose analytical forms for general ellipsoidal shells in the

unpressurized and high-pressure limits. However, the relative contributions of

the two geometric invariants describing a curved surface—the mean and Gaussian

curvatures—was not rigorously established in these results. In addition, the focus

on the tractable zero- and high-pressure limits leaves a gap in our theoretical

understanding of the indentation stiffness of ellipsoids and cylinders at intermediate

internal pressures.

Here, we present a comprehensive theoretical analysis of the linear indentation

stiffness of thin elastic ellipsoidal shells under both internal and external pressures.

Our main result is an expression for the indentation stiffness as an integral

over a single variable, which includes the elastic moduli, curvature radii, and

pressure as parameters. The integral provides closed analytical forms in several

limits, which agree with known results. More generally, it can be numerically
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evaluated for arbitrary curvatures and pressures, providing a theoretical evaluation

of the indentation stiffness in all regimes. Conceptually, we provide a unifying

framework which encompasses the local geometric rigidity of ellipsoids of arbitrary

curvature including the spherical and cylindrical limits (up to important corrections

at zero pressure in the cylinder limit, which we describe). Besides providing

analytical support to forms that were previously proposed using heuristic and scaling

arguments [1, 22], we also find a new pressure scale which controls the response of thin

shells under high internal pressure, and obtain new expressions for the indentation

stiffness of pressurized cylinders.

Our approach uses shallow-shell theory, which expresses the stress and

displacement fields of a shallow section of the shell using Cartesian coordinates

in a plane tangent to the indenting point. Shallow-shell theory is widely used in

elastic analyses of thin shells [7], and provides an accurate description when the

characteristic length scale of the deflection is small compared to the curvature radii.

As we will show, geometric rigidity ensures that point indentations induce such

localized deflections at all pressures for non-cylindrical thin shells, and at non-zero

internal pressures for cylindrical shells. For the zero-pressure limit of cylindrical

shells, the contribution of long-wavelength deflections becomes important, and the

shallow-shell theory breaks down; different techniques are needed to understand

the indentation stiffness of unpressurized cylinders, as has been done in Ref. 2.

Nevertheless, we show that as internal pressure rises, shallow-shell theory becomes

valid again, and provides useful new results above a threshold pressure which we

derive.

8



2.2 Shallow-Shell Equations and Indentation Stiffness

In this section, we will derive equations of equilibrium (EOEs) that characterize

local deformations of a spheroidal shell using the shallow-shell theory. We follow the

presentation by Koiter and van der Heijden [28]. Further analyses of the EOEs can

be found in 2.3.

We start by mathematically describing a general ellipsoidal shell and

characterizing a deformation imposed on it. We then address the special case of

spheroids which are ellipsoids of revolution. The shells that we are interested in are

thin: their thickness t is much less than the other shell dimensions, so that they can

be effectively treated as two-dimensional surfaces. Besides encompassing a large class

of artificial shells, thin-shell models have also been validated against experimental

measurements for biological structures, such as bacterial cell walls [29, 30] and

microtubules [27].

2.2.1 Description of Deformations of a Thin Shell

Let O be an arbitrary point on the equator of an ellipsoid where an external

point load is exerted (see Fig. 2.1.) We parametrize the ellipsoid using a right-

handed Cartesian coordinate system whose xy-plane is the ellipsoid’s tangent plane

at O. The x-axis is chosen such that it coincides with the projection in the tangent

plane of the curve which corresponds to one of the two principal curvatures at O.

The y-axis will be accordingly in-line with the other principal curvature direction,

and the z-axis points toward the center of the ellipsoid. Figure 2.1 illustrates such a

coordinate system. A local coordinate representation of the ellipsoid can be written

9



as

Z(x, y) = c− c

√
1−

(x
a

)2
−
(y
b

)2
. (2.1)

For a shallow region of the ellipsoidal surface close to the origin, such that
∣∣∂Z
∂x

(x, y)
∣∣ ,
∣∣∣∂Z∂y (x, y)

∣∣∣≪ 1, the expression above reduces to

Z(x, y) ≈ x2

2Rx

+
y2

2Ry

, (2.2)

where Rx := a2

c
and Ry :=

b2

c
are the two principal radii of curvature at O. It should

be noted that for the shallow-shell assumptions to hold, the approximated expression

for Z is only valid in a sufficiently small neighborhood of O.

FIGURE 2.1. A local coordinate representation of an ellipsoid in the vicinity of O.
The two local principal radii of curvature at O are Rx = a2

c
and Ry =

b2

c
. In the case

of a spheroid (i.e., an ellipsoid of revolution), we let b = c = Ry which is, under the
circumstance, the radius of the circular cross-section at O. The illustration depicts
a prolate spheroid for which Rx > Ry; an oblate spheroid would correspond to the
case Rx < Ry. Deformation at an arbitrary point P is described by a displacement
vector which is decomposed into a non-orthonormal basis {êi}3i=1.

Points on the ellipsoid will get displaced under a deformation. The deformation

can hence be described by a vector displacement field u(x, y) on the ellipsoid. Let

P = (x0, y0, Z(x0, y0)) be an arbitrary point. We decompose the displacement vector
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at P , u(x0, y0) ≡ uP , as follows:

u(x0, y0) =
3∑

i=1

ui(x0, y0) êi(x0, y0) ≡ ui(x0, y0) êi(x0, y0) ≡ uP,i êP,i, (2.3)

where êP,3 is the inward unit normal vector at P ; êP,1 and êP,2 are unit vectors,

which span the ellipsoid’s tangent plane at P , chosen such that their projections

in the plane Oxy coincide with x̂ and ŷ, respectively (see Fig. 2.1). The Einstein

summation convention was used. It should be pointed out that {êP,i}3i=1 is generally

not an orthonormal basis. The advantage of choosing such a basis is as follows: the

prescribed deformation maps the point P to P̃ =
(
x0+uP · x̂, y0+uP · ŷ, Z(x0, y0)+

uP · ẑ
)
≡
(
x + u · x̂, y + u · ŷ, Z + u · ẑ

)
P
, which can be further approximated

as
(
x + u1 − u3

∂Z
∂x

, y + u2 − u3
∂Z
∂y

, Z + u3

)
P
under the assumptions that the region

considered is shallow (or, equivalently, P is rather close to O), and |u1| , |u2| ≪ |u3|

for all points within the region.

Once the deformation is mathematically characterized, the strain tensor uαβ(x, y)

(α, β ∈ {1, 2}) can be obtained by computing the change of metric, as in Ref. 28:

uαβ =
1

2

(
∂αuβ + ∂βuα − 2u3

Rαβ

+ ∂αu3 · ∂βu3

)
, (2.4)

where we have adopted the notations ∂1 ≡ ∂
∂x

and ∂2 ≡ ∂
∂y
, and

(
1

Rαβ

)
:= diag

{
1

Rx

,
1

Ry

}
. (2.5)

It should be pointed out that the form of the strain tensor assumes that the

displacements are rapidly varying functions (on the scale of the shell’s curvature

radii) in the two principal directions, which is another key assumption of the
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shallow-shell theory [7]. Mathematically, this means that
∣∣∣ 1ui

∂αui

∣∣∣ ≫ 1
min{Rx,Ry} ;

for example, for a wave-like deformation of the form ui = ui,0e
iq·x, this criterion

becomes 2π
λα

=: qα ≫ 1
min{Rx,Ry} , i.e., the deformation wavelength λα is much smaller

than the principal radii of curvature. As we will see in 2.3.1, this assumption is well

justified in the study of thin curved shells for a wide range of geometric parameters.

For a two-dimensional isotropic elastic material, the stress tensor σαβ(x, y) is

related to the strain tensor through the strain-stress relation [5]:

σαβ =
Et

1 + υ

(
uαβ +

υ

1− 2υ
uγγ δαβ

)
, (2.6)

where E and υ denote the material’s Young’s modulus and Poisson’s ratio,

respectively; δαβ is the Kronecker delta symbol, and, as aforementioned, t stands

for the thickness of the material (recall that for thin shells, t ≪ min{Rx, Ry}).

These two tensor fields incorporate all the information about the deformation and

will be used below to write the elastic energy of the deformed ellipsoidal shell.

2.2.2 Elastic Energy of the Deformed Shell

It is known from differential geometry that a closed shell cannot bend without

stretching. If we further consider the closed shell to be pressurized (i.e., the shell

is subjected to a pressure p), then the total elastic energy associated with the

deformation will have three components, namely, bending energy, stretching energy

and pressure energy (i.e., the work done by the pressure on the shell).

The stretching energy can be generally written as

Es[uαβ] =
1

2

∫

S

dAuαβ σαβ. (2.7)

12



The bending energy is related to changes in local curvatures and hence only depends

on u3 [7]:

Eb[u3] =
1

2
D

∫

S

dA
{
(∆u3)

2 + 2(1− υ)
[
(∂12u3)

2 − ∂11u3 · ∂22u3

]}
, (2.8)

where D = Et3

12(1−υ2)
is the bending stiffness, and ∆ ≡ ∂11+∂22 is the two-dimensional

Laplacian operator. The pressure energy is simply given by

W [u3] = −
∫

S

dApu3. (2.9)

Our sign convention for pressure is that p > 0 (p < 0) corresponds to an internal

(external) pressure. If there is an extra external point load with magnitude F acting

at the point O, we can take into account the corresponding work done by simply

replacing p with p′ := p− Fδ2(x) in the above expression.

The integration domain S is some region in the vicinity of O, outside of which the

local deformation vanishes. Under the shallow-shell assumptions, the area element

dA gets simplified: dA =
√

1 +
(
∂Z
∂x

)2
+
(
∂Z
∂y

)2
dx dy ≈ dx dy. Adding up the

bending, stretching and pressure energies, we obtain the total-energy functional:

Etot[uαβ, u3] ≈
∫

S⊥

dx dy

{
1

2
uαβ σαβ +

1

2
D (∆u3)

2 +

+D(1− υ)
[
(∂12u3)

2 − ∂11u3 · ∂22u3

]
− p′ u3

}
,

(2.10)

where S⊥ is the projected region of S in the plane Oxy.
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2.2.3 Equations of Equilibrium (EOEs)

According to the variational principle, minimizing the total-energy functional

gives a system of EOEs:





D∆2 u3 +∆V χ− [χ, u3] = p− Fδ2(x),

1

Y
∆2 χ−∆V u3 +

1

2
[u3, u3] = 0,

(2.11)

where the Vlasov operator in the shallow-shell coordinates is given by ∆V =

1
Ry

∂11 +
1
Rx

∂22; χ(x, y) is the Airy stress function that encodes stress information

in the following way:

∂11χ = σ22, ∂22χ = σ11, and ∂12χ = −σ12; (2.12)

Y := Et, and [·, ·] denotes a second-order nonlinear operator known as the Monge-

Ampère operator [17]: for any two smooth functions f(x, y) and g(x, y),

[f, g] := ∂11f · ∂22g + ∂22f · ∂11g − 2∂12f · ∂12g. (2.13)

The next step is to linearize the nonlinear EOEs around the relaxed state of the

shell in response to the uniform pressure p. Like the total-energy functional, a general

deformation of pressurized elastic shells is a combination of two deformation states:

a membrane state and a bending state. The membrane state describes the in-plane

stresses that arise when the shell expands or contracts in response to the uniform

internal or external pressure with little change in local curvatures. The bending

state describes the indentation responses due to the external point load, which lead
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to localized transverse deformations with a significant bending energy component.

To compute the linear indentation stiffness of the shell, we linearize the nonlinear

EOEs around the membrane state and solve the resulting linearized equations for

the bending state.

The membrane state of a general triaxial ellipsoid is unwieldy [31] and leads to

distinct responses at all points on the ellipsoid. We therefore focus on the simpler

case of spheroidal shells, which match most natural and artificial designs. A spheroid

is an ellipsoid of revolution that has circular cross-sections along one of its principal

axes. We take Ox to be that axis, and b = c = Ry is thus the radius of the circular

cross-section at O, which corresponds to the equator of the spheroid (see Fig. 2.1).

The indentation stiffness that we will compute applies to all points on the equator,

which are geometrically identical because of the axial symmetry.

The Airy stress function associated with the membrane state near a point on the

spheroid’s equator is known as [32]

χ0(x, y) =
1

4
pRy

[(
2− Ry

Rx

)
x2 + y2

]
. (2.14)

We can then write the following ansatz:





u3(x, y) = u3,0 + u3,1(x, y),

χ(x, y) = χ0(x, y) + χ1(x, y),

(2.15)

where the subscripts 0 and 1 denote the membrane state and the bending state,

respectively. We took the normal displacement field in the membrane state (denoted

by u3,0) as a constant; this is an assumption commonly used in linear stability

analysis [7]. Substituting this ansatz into Eqs. (2.11) and discarding terms quadratic
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in u3,1 and χ1 that are assumed to be small, we finally obtain the linearized EOEs

for spheroidal shells:





D∆2 u3,1 +∆V χ1 −
1

2
pRy ∆u3,1 −

1

2
pRy

(
1− Ry

Rx

)
∂22u3,1 = −Fδ2(x),

1

Y
∆2 χ1 −∆V u3,1 = 0.

(2.16)

Although we have related the elastic moduli D and Y to microscopic constants

of uniform materials, they may also be regarded as effective moduli that penalize

changes in curvatures and metric of more complex quasi-two-dimensional structures,

such as biological shells.

The physical quantity that we seek by solving this set of differential equations

is the indentation stiffness. Recall that a point load with magnitude F is exerted

at O, an arbitrary point on the spheroid’s equator that serves as the origin in our

parametrization, and u3,1(x, y) describes the transverse displacement due to the point

load. The indentation stiffness is dictated by the Hooke’s law:

k = − F

u3,1(x = 0)
. (2.17)

2.3 Results

2.3.1 The Stiffness Integral

We have derived the EOEs that characterize the local deformation at O due to

the point load, Eqs. (2.16), which is a system of coupled linear partial differential

equations (PDEs). Fourier transform can be applied to solve linear PDEs; the

resulting solution always takes the form of an integral which often cannot be solved
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exactly [5]. However, in our case, the local nature of the indentation force (the

point load) and measurement (localized transverse displacement) leads to a simplified

Fourier integral. Recall again that the physical quantity that we are after is the local

indentation stiffness which only requires the knowledge of the transverse displacement

at the origin due to the point load, u3,1(x = 0). This local nature avoids the need

to solve Eqs. (2.16) over the entire domain and enables analytical evaluation of the

integral solution in our system.

Our convention for Fourier transform is the following: for any Fourier-

transformable function of two variables f(x, y) ≡ f(x),

f(x) =

∫
d2q

(2π)2
f̂(q)eiq·x, (2.18)

where

f̂(q) ≡ F{f(x)}(q) =
∫

d2x f(x)e−iq·x. (2.19)

Performing Fourier transform on Eqs. (2.16) and combining the resulting two

algebraic equations gives

F = F{Fδ2(x)}(q) = −k̃(q) û3,1(q), (2.20)

where

k̃(q) := Dq4 +
Y

q4

(
q2x
Ry

+
q2y
Rx

)2

+
1

2
pRyq

2 +
1

2
pRy

(
1− Ry

Rx

)
q2y . (2.21)

The indentation stiffness can thus be written as

k = − F

u3,1(x = 0)
=

[∫
d2q

(2π)2
1

k̃(q)

]−1

=: I−1. (2.22)
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Equations (2.21) and (2.22) underpin all our forthcoming results: the problem

of computing the indentation stiffness has been reduced to evaluating a real-valued

integral I, which we term the stiffness integral, over the two-dimensional wavevector

space. However, we have yet to specify the integration limits in Eq. (2.22). As with

any physical theory, the integration must strictly be carried out over some range of

wavevectors q for which the Fourier-transformed stiffness (Eq. (2.21)) is valid. The

large-wavevector (or UV) cutoff is dictated by the smallest wavelength for which the

shallow-shell theory is valid, which is of the order of the shell thickness t. We will

see that the integrand falls to zero for wavevectors whose magnitude is much smaller

than 1
t
, so the upper limit of the stiffness integral can be safely taken to infinity (i.e.,

the theory is UV-convergent).

The treatment of the small-wavelength (or IR) cutoff requires more care. The

strain-displacement relations used in the shallow-shell theory (Eq. (2.4)) are accurate

only for displacements which vary over length scales that are small compared to the

radii of curvature, i.e., Eq. (2.21) is strictly valid only for |qx| ≳ 1
Rx

and |qy| ≳ 1
Ry

.

Nonetheless, the physics of deflection of thin curved shells allows us to take the

small-wavevector limit to q ≡ ∥q∥ = 0 in the stiffness integral without sacrificing

accuracy for a wide range of geometries, provided that the shells considered are thin.

To understand why this statement is true, let us consider the Fourier contributions

to the stiffness integral in the absence of pressure. From Eq. (2.21), we find that 1
k̃(q)

has a roughly even contribution over a region in Fourier space within the bounds

|qx| ≲ 1
ℓb,y

and |qy| ≲ 1
ℓb,x

, where ℓb,x := 4

√
DR2

x

Y
and ℓb,y :=

4

√
DR2

y

Y
are two elastic

length scales arising from the balance between bending and stretching. For thin

shells, ℓb,x ∼ √
Rxt and ℓb,y ∼

√
Ryt scale with the geometric mean of the curvature

radii and shell thickness; therefore, the two length scales are small compared to
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the curvature radii themselves yet still large compared to the shell thickness which

serves as the UV-cutoff scale for the theory. This separation of length scales—a

consequence of the interplay of geometry and elasticity—is responsible for the success

of the shallow-shell theory in understanding indentation responses of thin shells, as

has previously been recognized in the case of spherical shells [15, 33].

For a broad range of thin-shell spheroidal geometries satisfying
√
Ryt ≪ Rx ≪

R2
y/t, the stiffness integral at zero pressure is dominated by modes with wavevectors

in the range 1/Rx ≲ |qx| ≲ 1/ℓb,y and 1/Ry ≲ |qy| ≲ 1/ℓb,x. As a result, including

the erroneous but finite contributions to the integral for wavevectors near the origin

(|qx| ≲ 1/Rx, |qy| ≲ 1/Ry) introduces an insignificant error to the indentation

stiffness and the lower limit of integration can be taken to q → 0 for these shells.

However, the required separation of scales breaks down when Rx → 0 (extremely

narrow oblate shells) or Rx → ∞ (cylinders) and the stiffness integral becomes

invalid at zero pressure in these limits. At finite internal and external pressures, the

convergence of the stiffness integral depends on additional physical considerations.

We will address these considerations separately in the remainder of this subsection

(where we impose the more stringent lower limit Rx ≥ Ry/2 on the curvature along

the x direction), as well as in sections 2.3.4 (which discusses the behavior of the

stiffness integral under external pressure) and 2.3.7 (which revisits the integral

for internally-pressurized cylinders). In the latter subsection, we show that the

indentation of cylindrical shells with a finite internal pressure is successfully captured

by shallow-shell theory even though the criterion Rx ≪ R2
y/t is violated. Through

these investigations, we will identify ranges of pressure values for which the stiffness

integral, Eq. (2.22) with lower and upper limits q = 0 and q = ∞ respectively,
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accurately captures the indentation stiffness for all spheroidal shell geometries with

Rx ≥ Ry/2 upto and including the cylinder limit of Rx → ∞.

Next, we nondimensionalize the stiffness integral using appropriate physical

scales. Of the two elastic length scales in the problem, we choose the scale

ℓb,y =
4

√
DRy

2

Y
associated with the equatorial radius to rescale lengths. For the

pressure scale, we choose psc =
4
√
DY

Ry
2 , the absolute value of the buckling pressure of

a spherical shell with the same equatorial radius [34]. Also, observing that parts of

k̃ depend on q =
√
qx2 + qy2, we rewrite the stiffness integral in polar coordinates.

Accordingly, after some algebra, we obtain

I(β, ηs,y) =
1

8π2

ℓ2b,y
κ

∫ 2π

0

dθ×

×
∫ +∞

0

dx
[
x+ ηs,y

(
1 + β sin2 θ

)]2
+
[(
1− β sin2 θ

)2 − η2s,y
(
1 + β sin2 θ

)2] .

(2.23)

Thereinto, ηs,y := p
psc

= pRy
2

4
√
DY

is the scaled pressure, and our sign convention for

the background pressure p carries over: a positive (negative) ηs,y corresponds to

an internal (external) pressure. The geometry of the spheroid is captured in the

parameter β := 1− Ry/Rx which characterizes the asphericity of a given spheroidal

shell; specifically, spheroids with β > 0 are prolate whereas β < 0 corresponds

to oblate spheroids. (See Figure 2.1.) Moreover, for a prolate spheroid,
√
β =

√
1− b2

a2
= ε is in fact the eccentricity of its elliptical cross sections.

A few geometries are of special interest. For spherical shells, β = ε = 0 (Rx = Ry),

i.e., both cross sections at O are circular. At the other extreme, infinitely long,

circular cylindrical shells have β = ε = 1 (Rx → ∞), i.e., the elliptical cross section

at O becomes an unbound rectangle with width Ry. The oblate spheroid β = −1
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does not appear to have a special geometry, but is important for stability reasons due

to the form of the membrane prestresses. When β < −1, Ry < 2Rx, and according to

Eq. (2.14), the in-plane stress along y-direction in the membrane state, σ0
22 = ∂11χ0 is

negative, i.e., compressive, for internally pressurized shells. As a result, oblate shells

with β ≤ −1 may even buckle under an internal pressure [35]. Correspondingly,

the positivity of the Fourier-transformed stiffness, Eq. (2.21), cannot be guaranteed

at all wavevectors even for positive pressures, and the corresponding analysis of the

stiffness integral will be hence somewhat different. In the rest of the paper, we will

restrict our focus to shells with −1 < β ≤ 1.

The indentation stiffness due to some general load function (that specifies the

spatial distribution of external forces), instead of a point load, can be calculated as

the spatial convolution of k and the load function since k can be thought of as a

Green’s function. Such a convolution integral might be carried out numerically, as

long as the load function is itself confined to the shallow region of interest.

2.3.2 Zero-Pressure Stiffness

As a direct check, we can first calculate the indentation stiffness at zero pressure

with the stiffness integral. Setting ηs,y = 0 reduces Eq. (2.23) to

I(β, ηs,y = 0) =
1

8π2

ℓ2b,y
κ

∫ 2π

0

dθ

∫ +∞

0

dx

x2 +
(
1− β sin2 θ

)2

=
1

8

ℓ2b,y
κ

1√
1− β

=
1

8

√
RxRy

DY
.

Taking the inverse then gives the zero-pressure stiffness

kp=0 = 8
√
DY

√
K. (2.24)
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This agrees with the conjecture in Ref. 1, analytically showing that the zero-pressure

stiffness is indeed governed by a shell’s local Gaussian curvature K := 1
RxRy

= 1−β
Ry

2 .

Eq. (2.24) holds for almost all spheroidal shells, except close to the limit of

infinitely long, circular cylindrical shells (β → 1). For instance, unpressurized

cylinders have a finite linear indentation stiffness [2] whereas our shallow-shell

result predicts zero stiffness. The reason is that for such shells with low Gaussian

curvature, the indentation responses at zero pressure are dominated by long-

wavelength components much larger than the curvature radius Ry, and the shallow-

shell approximations thus break down. Nevertheless, as we will see in 2.3.7.1,

shallow-shell theory becomes valid as the internal pressure rises because of the

appearance of a new deformation length scale, so our approach remains useful up to

β = 1 for internally pressurized shells.

The fact that the zero-pressure stiffness of a double-curved shell depends on

its local Gaussian curvature, in hindsight, is quite sensible; in fact, we might

have guessed this dependence in the first place, without explicitly carrying out the

integration. The reason is as follows. The physics should not depend on the choice

of coordinates. In light of this, the zero-pressure stiffness can only depend on those

quantities, constructed from the curvature tensor, that are invariant under rotation.

For a two-dimensional surface, there are two such candidates, namely: the Gaussian

curvature and the mean curvature. From Eq. (2.21), we can infer that the stiffness

simply cannot depend on the mean curvature: setting either Rx or Ry to infinity, the

stiffness would vanish, while the mean curvature remains finite; in other words, it is,

ironically, the inevitable failure of shallow-shell theory, when being applied to long

cylindrical shells, that actually guarantees the Gaussian-curvature dependence.
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2.3.3 Numerical Evaluation of the Stiffness Integral
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FIGURE 2.2. Indentation stiffness of five different shell geometries subject to both
internal and external pressures. Symbols denote data obtained from numerically
evaluating the stiffness integral (Eq. (2.23)), and the dashed curves represent values
associated with the analytical expression for the asymptotic indentation stiffness
(Eq. (2.30)). Solid line shows the known analytical stiffness for spherical shells,
Eq. (2.28). Inset shows the magnitude of external pressures at which the indentation
stiffness vanishes for each shell (symbols), compared to the prediction from the local
instability criterion, Eq. (2.25, a) (solid line).

Having preliminarily verified the validity of the stiffness integral, we evaluate the

indentation stiffness for four shell geometries in the range of interest −1 < β ≤ 1

via numerical evaluation of the stiffness integral, Eq. (2.23). Results are shown in

Figure 2.2. As expected from Eq. (2.24), we observe that close to zero pressure,

shells with lower values of β are stiffer since their local Gaussian curvature is higher

at the indentation point. However, at higher pressures, the trend is reversed, and

oblate shells become softer than prolate shells at the same pressure. At negative

(i.e., external) pressures, the indentation response softens, and the stiffness vanishes

at a critical pressure value which falls with increasing asphericity for β > 0, but is
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constant at ηs,y = −1 for β < 0 (inset to Figure 2.2). Below the critical pressure

(i.e., at pressures more negative than the critical pressure), the indentation stiffness

remains nil since the stiffness integral no longer converges; in fact, the indentation

stiffness below the critical pressure, the concept itself becomes physically unmeaning

because the shell is already buckled. In the remainder of this section, we reveal the

physical mechanisms underlying these features through an analysis of the stiffness

integral. We also take a detailed look at the behavior of the indentation stiffness at

pressures close to the critical value, and at high pressures. We wrap up the section

by studying the stiffness of pressurized cylinders (β = 1).

2.3.4 Loss of Stiffness and Buckling Instability

From Figure 2.2, we notice that for all the chosen asphericities, there exists a

critical external (i.e., negative) pressure at which the indentation stiffness vanishes.

This softening indicates a divergence of the stiffness integral, which occurs when

k̃ → 0 for some value(s) of the wavevector q (Eq. (2.21)) heralding the existence of

an unstable mode at that wavevector. The instability in the shell shape due to the

divergent mode is a local manifestation of the buckling instability exhibited by curved

shells under a uniform external pressure [5]. In practice, a minuscule indentation

force applied when the shell is close to the buckling instability would generate a large,

sudden inversion in the shell near the indentation point. The description of this post-

buckled shape with large deflections goes beyond the reach of shallow-shell theory,

involving sudden, often catastrophic changes in the enclosed shell volume; however,

the approach to the buckling threshold itself can be captured using linear stability

analysis. The relation between indentation response and buckling has been employed
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experimentally as a non-destructive means to determine the buckling threshold of

thin shells [36, 37, 38].

The local critical pressure at the equator of the spheroid is the threshold ηc at

which the stiffness integral first becomes unbounded, i.e.,

lim
ηs,y→η+c

I(β, ηs,y) = +∞.

This threshold is obtained by finding the global minima of k̃(q) in wavevector space

and identifying the pressure at which they hit zero, which gives:

ηc =





−1− β

1 + β
, for 0 ≤ β < 1,

−1, for − 1 < β < 0,

(2.25, a)

or

pc := ηc psc =





− 4
√
DY

2RxRy −Ry
2 , for 0 ≤ β < 1,

−4
√
DY

Ry
2 , for − 1 < β < 0,

(2.25, b)

in real units. More compactly, we can write pc, in terms of the equatorial Gaussian

curvature K and the asphericity β, as

pc = −4
√
DYK

1 + |β| , (2.25, c)

for all |β| < 1.

We used the word “local” to emphasize the fact that the critical pressure we have

identified only characterizes the loss of stability at the equator of the spheroidal shell.

Other regions of the shell have different local curvatures, and might experience loss
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of stability at different values of the external pressure. The global buckling pressure

of the spheroidal shell corresponds to the smallest magnitude of external pressure at

which a local instability arises somewhere on the shell. Noting that regions of highest

Gaussian curvature are locally the stiffest, and from symmetry considerations, we

expect Eq. (2.25, c) to be the global buckling pressure for prolate shells (β > 0)

for which the Gaussian curvature is lowest for points along the equator. For oblate

shells, by contrast, the Gaussian curvature is lowest at the two poles ((±a, c, c) in

Figure 2.1), where the local geometry is spherical with radius Rp = b2

a
= 1−β√

K
, and

the corresponding buckling pressure is

pc,p = −4
√
DY

R2
p

= −4
√
DYK

(1− β)2
. (2.25, d)

As expected, |pc,p| < |pc| for oblate shells with β < 0. The expressions (2.25, c) for

0 ≤ β < 1 and (2.25, d) for −1 < β < 0 reproduce known results for the global

buckling pressures of ellipsoidal shells [39].

Moving forward, we only consider pressures above the local buckling pressure at

the indentation point (i.e. p > pc) when evaluating the indentation stiffness. Note

that for oblate shells, this range includes external pressures for which the poles of the

spheroid are past their buckling threshold. However, our local-stiffness results are

still useful for shells which match the elasticity and geometry of Figure 2.1 locally in

the vicinity of the equator but deviate from it further away (e.g., an oblate spheroid

reinforced at the poles to prevent buckling). When ηs,y > ηc, the integrand in

Eq. (2.23) is guaranteed to be positive definite, and the integration over the radial
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coordinate can be carried out to leave behind a single integral:

I(β, ηs,y) =
1

8π2

ℓ2b,y
κ

∫ 2π

0

dθ

iπ
2
+ tanh−1

[
ηs,y(1+β sin2 θ)√

η2s,y(1+β sin2 θ)
2−(1−β sin2 θ)

2

]

√
η2s,y
(
1 + β sin2 θ

)2 −
(
1− β sin2 θ

)2 . (2.26)

2.3.5 Analytical Results for Spherical Shells

In this section, we will recover and review some results for the indentation stiffness

of spherical shells in the literature.

Setting β = 0 (or, equivalently, Rx = Ry) in Eqs. (2.25), we first recover the

critical pressure of spherical shells [34],

pc, sph := pc(Rx = Ry) = −4
√
DY

Ry
2 , (2.27, a)

or, in the scaled units,

ηc, sph := ηc(β = 0) = −1. (2.27, b)

(Recall that in our convention, ηs,y < 0 corresponds to an external pressure.)

The stiffness integral (Eq. (2.26)) also gets greatly simplified because the angular

dependence vanishes when β = 0:

I(β = 0, ηs,y) =
1

4π

ℓ2b,y
κ

iπ
2
+ tanh−1

(
ηs,y√
η2s,y−1

)

√
η2s,y − 1

.

Taking the inverse and rewriting the resulting expression in terms of real physical

quantities, we obtain the established result of the indentation stiffness of pressurized
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spherical shells [14, 15],

ksph(p) =
8
√
DY

Ry





√
1− η2s,y

1− 2
π
arcsin ηs,y

, for |ηs,y| < 1,

π

√
η2s,y − 1

ln

(
ηs,y+

√
η2s,y−1

ηs,y−
√

η2s,y−1

) , for ηs,y ≥ 1.

(2.28)

In practice, two limits of the indentation stiffness are of particular interest: the

asymptotic behavior in the large-pressure limit ηs,y ≫ 1 and the critical behavior as

the buckling pressure is approached (the limit ηs,y → η+c, sph). For the large-pressure

limit, it can be shown that

ksph ∼ 4π
√
DY

Ry

ηs,y
ln 2ηs,y

. (2.29)

By expanding ksph around pc, sph, one can demonstrate that the indentation stiffness

of spherical shells near the critical pressure scales as
√

pc, sph−p

pc, sph
=
√

1− ηs,y
ηc

.

In the next section, after briefly explaining why the two limits are interesting, we

will derive similar expressions for spheroidal shells.

2.3.6 Analytical Expressions for Indentation Stiffness of Spheroidal

Shells at Low and High Pressures

While the stiffness integral can be numerically integrated to obtain the

indentation stiffness at any pressure and geometry within our prescribed limits, the

analytical behavior of the stiffness at large pressures (ηs,y ≫ 1) and close to the

buckling instability (ηs,y → η+c ) is of special interest. The large-pressure regime

is relevant to the mechanics of biological cells, which are often investigated with
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indentation assays [3, 18, 25, 26], using shell elasticity as a minimal model of the

expected response. The crowded internal environment of living cells leads to very

high turgor pressures; some typical values that have been reported are 30 kPa

for the bacterium Escherichia coli (which corresponds to ηs,y ≈ 15) [3], 2 MPa

(ηs,y ∼ 103) for Bacillus subtilis [40] and 2 MPa (ηs,y ≈ 10) for Saccharomyces

cerevisiae yeast cells [26]. Analytical expressions for the asymptotic behavior of

the indentation stiffness at large rescaled pressures will be useful to infer elastic

properties, which themselves are sensitive to biological processes, by performing

indentation measurements. Secondly, shell buckling can be interpreted as a first-

order phase transition with pressure as the order parameter [41], which ought to leave

a signature in the indentation response. Studying the limit ηs,y → η+c will provide us

with insights regarding the essence of the non-analyticity of the indentation stiffness

near the critical pressure.

2.3.6.1 The Large-Pressure Regime. We are interested in finding a parameter

in the modified stiffness integral, Eq. (2.26), which becomes small at large pressures

to enable an exact evaluation of the leading stiffness behavior. From the form of the

integrand, the appropriate parameter is identified as

y(β, ηs,y, θ) :=
1

ηs,y

1− β sin2 θ

1 + β sin2 θ
.

In the range of interest of the asphericity, −1 < β ≤ 1, the parameter y is small for

all 0 ≤ θ < 2π provided the pressure satisfies

ηs,y =
pRy

2

4
√
DY

≫





1, for 0 ≤ β ≤ 1,

1− β

1 + β
, for − 1 < β < 0.

(∗)
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We use the small parameter to rewrite and analytically evaluate the modified stiffness

integral (Eq. (2.26)) in the large-pressure limit:

I =
1

8π2

ℓ2b,y
κ

∫ 2π

0

dθ

ηs,y
(
1 + β sin2 θ

)
iπ
2
+ tanh−1

(
1√
1−y2

)

√
1− y2

y≪1≈ 1

8π2

ℓ2b,y
κ

1

ηs,y

[
ln 2ηs,y

∫ 2π

0

dθ

1 + β sin2 θ
+

∫ 2π

0

dθ

1 + β sin2 θ
ln

(
1 + β sin2 θ

1− β sin2 θ

)]

≈ 1

4π

ℓ2b,y
κ

1

ηs,y

1√
1 + β

[
ln 4ηs,y + ln

(
1 +

1

β

)
− 2 tanh−1

(√
1− β

1 + β

)]
.

(2.30)

The inverse of Eq. (2.30) provides an analytical expression for the indentation

stiffness of spheroidal shells at large pressures. We note that in our choice of length

and pressure units, Eq. (2.30) holds for both prolate and oblate spheroidal shells,

but the criterion for “large pressure” differs in these two cases, as defined in Eq. (∗).

To simplify and shed light on the final expression, we introduce a novel radius

parameter R := Ry

√
1 + β with which we can rewrite Eq. (2.30) as

I =
1

4π

R√
κY

1

ηR

[
ln 4ηR − ln

(
1 +

√
1− β2

)]
(2.31, a)

=
1

4π

R√
κY

1

ηR

[
ln 4ηR − ln

(
1 +R

√
K
)]

, (2.31, b)

where ηR := pR2

4
√
DY

= ηs,y(1 + β) is the corresponding scaled pressure, and K again

denotes the local Gaussian curvature of the given shell. Besides its mathematical

convenience, R can be related to the second stress invariant, i.e., the determinant of
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the prestress tensor σ0
αβ:

R = Ry

√
1 + β = Ry

√
2− Ry

Rx

=
2

p

√
σ0
11σ

0
22, (2.32)

where σ0
11 = ∂22χ0, and σ0

22 = ∂11χ0 are the prestresses along the principal directions

in the membrane state. Equation 2.32 shows that R is the radius of curvature for

which the internal pressure p would balance a membrane tension of magnitude equal

to the square root of the second stress invariant according to Laplace’s law [42].

We term the associated curvature, R−1, the distensile curvature. Just as the local

Gaussian curvature dictates the zero-pressure indentation stiffness of curved shells

(Eq. (2.24)), the distensile curvature dominates the indentation response at large

internal pressures although a residual dependence on the Gaussian curvature remains

in the stiffness integral (Eq. (2.31, b)).

From Eq. (2.31, a) we can see that under the rescaling (with the novel radius

parameter), spherical shells are the stiffest in the large-pressure regime since when

β = 0, the geometric contribution, ln
(
1 +

√
1− β2

)
, reaches its maximum ln 2 and

hence minimizes the stiffness integral. (This feature is depicted in the bottom inset

of Figure 2.3.) At still higher pressures such that the geometric contribution becomes

negligible, Eq. (2.31, a) reduces to

I
ηR≫1≈ 1

4π

R√
κY

ln 4ηR

ηR
. (2.33)

In practice, the expression

I
ηR≫1≈ 1

4π

R√
κY

ln 2ηR

ηR
(2.34)
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is more accurate for most shell geometries, since ln
(
1 +

√
1− β2

)
is closer to

ln 2 than to zero for |β| < 0.91. By comparison to Eq. (2.29), we see that the

corresponding stiffness is identical to the high-pressure response of a spherical shell

with radius R and rescaled pressure ηR.

Equations (2.31) and (2.34) provide a concise interpretation of the indentation

stiffness of spheroidal shells at large pressures. When the material parameters D

and Y are fixed, the stiffness in the large-pressure limit depends on three quantities:

the pressure p, the determinant of the stress tensor at the point of indentation,

and the local Gaussian curvature K. The first two quantities define a curvature

radius R and a dimensionless pressure ηR which both originate from the membrane

prestress; Eq. (2.31, b) explicitly separates the prestress and geometry contributions

to the indentation stiffness. The large-pressure indentation of the shell approaches

that of a sphere with the prestress-derived curvature and pressure scales (Eq. (2.34))

when the weak dependence on K is ignored. Upon using these new scales, a duality

connecting prolate to oblate shells at high pressures is revealed: Eq. (2.31, a) is

invariant under the replacement β → −β, so a shell with geometric parameters

{Ry = ρ, β = β0} and internal pressure p has the same high-pressure response

as a shell with parameters
{
Ry = ρ

√
(1 + β0)/(1− β0), β = −β0

}
and the same

pressure, for which the parameters R and ηR are identical. The criterion for high

pressure, Eq. (∗), also reduces to the symmetric form

ηR ≫ 1 + |β| ∼ 1.

Comparison with established results. In previous works [1, 22], it was hypothesized

that the high-pressure indentation response of ellipsoidal shells is dictated by the
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FIGURE 2.3. Comparison of predicted indentation stiffness (dashed lines) to finite-
element simulation data from Ref. 1 (symbols). Data are scaled using the length scale

ℓR = 4

√
DR2

Y
and pressure scale 4

√
DY /R2, for which we predict convergence of the

stiffness curves at large rescaled pressures ηR = pR2/4
√
DY . A similar convergence

was depicted in FIG. 3 of Ref. 1 using different scales. Yellow solid line corresponds to
the zero-pressure stiffness of long cylindrical shells, calculated with formulae in Ref. 2,
since shallow-shell theory does not apply to cylinders below a threshold pressure
(see discussion in 2.3.7). The top inset compares the rescaled pressure ηR to the
alternative variable τ introduced in Ref. 1. (See text for details.) The bottom inset
is a linear-log plot showing how the product of the inverse scaled stiffness and the
scaled pressure varies as the pressure increases; thereinto, the black solid line shows
the result for spherical shells.

mean curvature radius RM = 2/(R−1
x +R−1

y ) and a dimensionless pressure scale τ set

by the mean membrane prestress at the indentation point, σM = (σ0
11 + σ0

22)/2, via

τ =
σMRM

2
√
DY

.

Our asymptotic form for the inverse of the indentation stiffness, Eq. (2.34), parallels

the high-pressure indentation stiffness proposed in Ref. 1 which used RM and τ in

place of R and ηR respectively. However, the origins of our radius and pressure scales

are somewhat different as they utilize the determinant, rather than the trace, of the

membrane stress (Eq. (2.32)).
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Despite these differences, our proposed length and pressure scales are as successful

as the previously-hypothesized scales in quantifying the high-pressure indentation

response. In Figure 2.3, we compare our predictions for the indentation stiffness

(curves) to the results of finite-element simulations (symbols) reported in FIG. 3

of Ref. 1. Upon using the new length and pressure scales, the data for ηR ≫ 1

collapse onto the proposed asymptotic form, Eq. (2.34) (solid line). We also

compare our numerically-evaluated indentation stiffness, Eq. (2.26) (dashed curves),

to the finite-element data, and find quantitative agreement for almost all geometries

and pressures. The disagreement between the stiffness integral and the measured

indentation stiffness at low pressures for cylindrical shells (β = 1) is expected; see

2.3.7 for an explanation and a more accurate prediction (dotted line). Our prediction

also deviates from the finite-element simulation results for the highest simulated

pressure of the oblate spheroidal geometry β = −0.778; we hypothesize that second-

order shape changes in response to the internal pressure might be responsible for this

discrepancy. Apart from these data points, our theoretical predictions lie within 5%

of the finite-element measurements, which validates our approach over a wide range

of geometries and pressures. The duality connecting prolate to oblate shells upon

using the scales R and ηR is also visible in Figure 2.3, since the data for β = 0.75

and β = −0.778 nearly overlap.

We were unable to neatly separate the contributions from the mean and

the Gaussian curvatures in our evaluation of the high-pressure stiffness integral.

Therefore, we cannot directly evaluate the relative merits of using our proposed

scales R and ηR over the previously-proposed scales RM and τ from Ref. 1. However,

some insight as to why both scales perform well in explaining the high-pressure

indentation stiffness can be obtained by comparing them as a function of geometry.
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By expressing RM and τ in terms of Ry and β, we find the ratio

ηR

τ
=

(1 + β)(2− β)

2 + β
.

As the inset of Figure 2.3 illustrates, the ratio is of order one for most values of

the asphericity. Similarly, the ratio R/RM evaluates to a number of order one for

|β| < 1. Therefore, using the two sets of physical scales is expected to provide

similar results. The discrepancy between the two approaches becomes significant

only for oblate shells with β approaching −1. In this limit, an advantage of the

scales introduced here is that the instability expected for large internal pressures at

β = −1 (see 2.3.4) is reflected in the pressure-induced curvature taking on imaginary

values when σ0
22 becomes negative in Eq. (2.32). By contrast, the mean curvature

and mean prestress both remain positive and vary smoothly as β falls below −1, and

the approximations using the mean scales incorrectly predict a finite indentation

response at large pressures.

2.3.6.2 The Critical Behavior upon Approaching the Buckling Pressure.

We now analyze the functional approach of the indentation stiffness to zero as

the critical pressure is approached from above (ηs,y → η+c ). (Recall that in our

convention, external pressures correspond to ηs,y < 0, and the critical pressure ηc for

the local instability is negative.) Defining the fractional distance from the critical

pressure as

ϵ :=
ηc − ηs,y

ηc
=





1 +
1 + β

1− β
ηs,y, for 0 ≤ β < 1,

1 + ηs,y, for − 1 < β < 0,
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FIGURE 2.4. Critical behavior of the indentation stiffness as ηc is approached, for
five spheroidal geometries. Symbols denote data obtained from numerical integration
of the stiffness integral. Solid and dashed lines correspond to analytical expressions
Eqs. (2.28) and (2.35), respectively. Inset shows the same data on linear-log scales
to reveal the slow approach to zero stiffness as ηs,y → η+c for non-spherical shells.

we would like to study the limit ϵ → 0+ of the stiffness integral. As before, we first

rewrite the stiffness integral (Eq. (2.26)) in a simplified form

I =
1

2π2

ℓ2b,y
κ

∫ π
2

0

dθ ×





1

1− β cos2 θ

π
2
+ arcsin y√
1− y2

, for 0 ≤ β < 1,

1

1− β sin2 θ

π
2
+ arcsin y′√
1− y′2

, for − 1 < β < 0,

where

y(β, ϵ, θ) :=
1 + β cos2 θ

1 + β

1− β

1− β cos2 θ
(1− ϵ),

and

y′(β, ϵ, θ) :=
1 + β sin2 θ

1− β sin2 θ
(1− ϵ).
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Notice that the limits

lim
ϵ→0+

θ→0+

y = 1 and lim
ϵ→0+

θ→0+

y′ = 1

give rise to divergence of the integrals. In other words, in the limit ϵ → 0+, the

definite integrals are dominated by their values in the vicinity of θ = 0. Accordingly,

we can approximate them by replacing the integrands with the corresponding second-

order Taylor polynomials around (ϵ, θ) = (0, 0):

I ≈ 1

2
√
2π

ℓ2b,y
κ

∫ π
2

0

dθ ×





1

1− β(1− θ2)

1√
ϵ+ 2βθ2

1−β2

, for 0 ≤ β < 1,

1

(1− βθ2)
√
ϵ− 2βθ2

, for − 1 < β < 0.

These integrals can be analytically evaluated:

I ≈ 1

4π

ℓ2b,y
κ

1√
|βηc|

sinh−1

(√
2

4
π2

1
|β| + 1 + f(β)

1√
ϵ

)

≈ 1

4π

ℓ2b,y
κ

1√
|βηc|

ln

(√
8

4
π2

1
|β| + 1 + f(β)

1√
ϵ

)
,

(2.35)

where

f(β) :=





(
1− 4

π2

)
β, for 0 ≤ β < 1,

0, for − 1 < β < 0.

Figure 2.4 shows that the analytical result, Eq. (2.35) (dashed lines) successfully

reproduces the results due to numerical integration of the stiffness integral (symbols)

close to the critical pressure for four different shells.

Eq. (2.35), the main result in this section, implies that for general spheroidal

shells, their indentation stiffness falls off as the inverse of the logarithm of the distance
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ϵ from the critical point, i.e., k ∝ − 1
ln

√
ϵ
. This slow approach of the stiffness to zero,

due to the logarithmic divergence of the stiffness integral for non-spherical shells, is

evident in the inset to Figure 2.4. By contrast, the approach to zero is more drastic

for spherical shells: upon taking the limit |β| → 0 of Eq. (2.35), one obtains

lim
|β|→0

1√
|βηc|

sinh−1

(√
2

4
π2

1
|β| + 1

1√
ϵ

)
=

π√
2ϵ
,

which implies that near the critical pressure, the indentation stiffness of spherical

shells ksph ∝ √
ϵ, as was expected from the exact results reported in 2.3.5.

Spherical shells are much softer at all pressures near the critical pressure compared

to spheroidal shells, since ksph/k ∝ √
ϵ ln

√
ϵ

ϵ→0→= 0. The contrasting characters of

the softening as the critical pressure is approached reflects the fact that spherical

shells harbor a massive degeneracy of divergent Fourier components of the stiffness

integral as ηs,y → η+c (a circle with radius q = 1/ℓb,y in the wavevector plane),

whereas non-spherical shells exhibit divergent Fourier modes only at the two values,

qpro
± =

(
0,±√

1− β/ℓb,y
)
and qob

± = (±1/ℓb,y, 0) for prolate and oblate shells,

respectively.

The results in this subsection do not apply to cylindrical shells because the limit

β → 1− fails to exist (limβ→1− ηc = 0). A different approach will be used to study

cylindrical shells below.

2.3.7 Indentation Responses of Cylindrical Shells

The case of extremely long prolate ellipsoids, for which Rx → ∞ or β → 1,

requires special treatment. As we argued in ??, shallow-shell theory accurately

describes the strains associated with transverse deflections only if the deflections
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vary over length scales that are small compared to the local radii of curvature Rx

and Ry. When Rx → ∞, the characteristic wavelength of deflections along the y

direction, which is controlled by ℓb,x, eventually becomes larger than the cylinder

circumference 2πRy. Shallow-shell theory builds the response to point indentation

and to external pressure out of modes that do not change the metric or curvature of

the shell, erroneously predicting zero indentation stiffness for unpressurized cylinders

(2.3.2) as well as buckling at an infinitesimal external pressure (ηc → 0, 2.3.4).

The true deformation mode responsible both for the indentation stiffness and

the finite buckling pressure of an infinitely long cylindrical shell is the isometric

change in shape of the circular cross section to an ellipse, which is also responsible

for the buckling of inextensible rings [7]. This mode extends over the entire

shell circumference and cannot be captured by shallow-shell theory. Unlike

the characteristic deflections of doubly-curved shell segments which involve both

stretching and bending, the elliptical mode costs no stretching energy as it does not

change the circumference; it only involves bending energy because of the change in

curvature away from the initial circular shape. When the bending energy of the

elliptical shape change is evaluated using basis functions that extend over the entire

circumference, the mechanics of the cylindrical shell can be accurately described. For

instance, the buckling pressure for long cylindrical shells evaluated using elliptical

modes is pc, cyl = − 3D
Ry

3 [7]. Using similar methods, the indentation stiffness of zero-

pressure cylindrical shells was derived in Ref. 2 to be

kasy,0 ≈ 1.37
Et

5
2

R
3
2

. (2.36)

In principle, the same non-shallow-shell techniques could be used to evaluate the

indentation stiffness of cylinders at finite internal pressure. However, we find that
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the balance between pressure and elasticity gives rise to a characteristic deformation

wavelength that quickly becomes small compared to the curvature radius as the

internal pressure is increased, and the validity of shallow-shell results becomes re-

established. To derive this new characteristic length, we notice that it is bending and

not stretching which primarily dictates the deformation energy of cylinders because of

the existence of the isometric deformation modes, as is evident from the expressions

for the buckling pressure and the zero-pressure indentation stiffness. Accordingly, the

characteristic extent of deformations of pressurized cylinders is obtained by balancing

the bending and tension terms in the total-energy functional, which leads to the result

ℓp =

√
D

pRy

.

When the pressure becomes appreciable, this length scale falls far below the curvature

radius Ry and our shallow-shell analysis, in particular the stiffness integral Eq. (2.26),

can be used to derive the indentation of cylindrical shells. In Figure 2.3, the

numerically-integrated indentation stiffness (black dashed line) is seen to agree

with the results of finite-element simulations (from Ref. 1) for pressures above

ηR = 2ηs,y = 0.1. At lower pressures, the stiffness crosses over to the zero-pressure

result from Ref. 2 (yellow line).

In the remainder of this subsection, we develop analytical approximations for the

indentation stiffness of cylinders which cover a wide range of pressures. To do so,

we exploit the separation between the two pressure scales ηs,y and |pc, cyl| for thin

shells, which allows us to evaluate the stiffness integral in “low-pressure” (ηs,y ≪ 1)

and “high-pressure” (ηs,y ≫ 1) regimes while satisfying the condition ℓp ≪ Ry for

shallow-shell theory to be valid.
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2.3.7.1 Validity of Shallow-Shell Theory in the Low-Pressure Limit

ηs,y ≪ 1. First, we will show that the shallow-shell theory is still valid for a range

of pressures satisfying ηs,y ≪ 1 for long cylindrical shells, provided that the shells

are thin. The requirement ℓp ≪ Ry amounts to p ≫ D
Ry

3 , a pressure scale related to

the buckling pressure pc, cyl. To relate the two pressure scales psc (which underlies

the dimensionless pressure ηs,y) and
D
Ry

3 , we write:

ηs,y =
pRy

2

4
√
DY

≡ 1

4

pRy
3

D

1
√
γy

, (2.37)

where the dimensionless Föppl-von Kármán number is

γy ≡
Y Ry

2

D
≃ 10

(
Ry

t

)2

.

For typical thin elastic shells, 0.001 ≤ t
Ry

≤ 0.05 [7], so there exists a wide range of

pressures which simultaneously satisfy p ≫ D
Ry

3 (that is, ℓp ≪ Ry, and the shallow-

shell theory holds) and ηs,y ≪ 1 (the low-pressure limit for the stiffness integral).

The wide range manifests the fact that due to a finite Gaussian curvature, a spherical

shell is able to withstand more external forces than a long cylindrical shell of the

same radius, i.e., the magnitude of the spherical shell’s buckling pressure is larger.

2.3.7.2 Analytical Expressions for the Indentation Stiffness in the Limit

ηs,y ≪ 1. We start our analysis of the stiffness integral (Eq. (2.26)) by setting β = 1:

I(β = 1, ηs,y) =
1

2π2

ℓ2b,y
κ

∫ π
2

0

dθ

sin2 θ

arccos
(
y(ηs,y, θ)

)
√

1− y2(ηs,y, θ)
,
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where

y(ηs,y, θ) := ηs,y
1 + cos2 θ

sin2 θ
= ηs,y

(
2 cot2 θ + 1

)
.

Making the substitution u = cot θ, we can further reduce the stiffness integral:

I(β = 1, ηs,y) =
1

2π2

ℓ2b,y
κ

1√
2ηs,y

∫ +∞

0

du
arccos(u2 + ηs,y)√
1− (u2 + ηs,y)2

.

Note that ηs,y now couples with the integration variable u in an additive manner.

Hence, for ηs,y ≪ 1, we can write the stiffness integral as a power series of ηs,y:

I =
1

8π2

ℓ2b,y
κ

× 2
√
2

∞∑

n=0

1

n!

[∫ +∞

0

du (Du2)n
(
arccos (u2)√

1− u4

)]
(ηs,y)

n− 1
2 , (2.38)

where the differential operator Du2 ≡ d
d(u2)

= 1
2u

d
du
. Truncating the series after

the first four terms and numerically evaluating the coefficients gives the sought

approximate expression for the indentation of cylindrical shells with pressures in

the range D/R3
y ≪ p ≪ 4

√
DY /R2

y:

I ≈ 1

8π2

ℓ2b,y
κ

(
11.6
√
ηs,y

− 2.66
√
ηs,y + 1.83η

3
2
s,y − 0.998η

5
2
s,y

)
. (2.39)

2.3.7.3 Analytical Expressions for the Indentation Stiffness of Cylindrical

Shells that Are Highly Pressurized. At high pressures, the results of 2.3.6.1

can be applied directly. For the cylindrical geometry (β = 1), the novel radius

parameter becomes R = Ry

√
1 + β =

√
2Ry, and the Gaussian curvature is K = 0.

Substituting these forms into Eq. (2.31, a) and then taking the inverse of the resulting

expression, we obtain the indentation stiffness of long cylindrical shells in the large-
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FIGURE 2.5. Scaled indentation stiffness as a function of pressure for an infinitely
long, thin circular cylindrical shell. Results of numerical integration (symbols) are
compared to the two approximate expressions derived for low pressures (dotted curve)
and high pressures (dashed curve). The lower axis reports the rescaled pressure
ηs,y = p/psc, whereas the upper axis (orange) uses the alternate pressure scale D/Ry

3

computed using the parametersD = 1.76×10−19 J and Ry = 0.5 µm representative of
the E. coli cell wall [3]. The resulting Föppl-von Kármán number is γy = 1.71× 105.

Shallow-shell theory is valid as long as pRy
3

D
≳ 10. The zero-pressure stiffness kasy,0

(Eq. (2.36)), calculated using different methods in Ref. 2, is marked by a star in
the main panel and a solid line in the inset. Inset shows the low-pressure behavior
on logarithmic scales, where the square-root dependence of indentation stiffness on
pressure is apparent.

pressure limit ηs,y ≫ 1,

kcyl ≈
4π

√
DY

Ry

√
2

ηs,y
ln 8ηs,y

. (2.40)

Figure 2.5 compares the numerically-evaluated stiffness for pressurized cylindrical

shells (from inverting Eq. (2.26) to the low-pressure (Eq. (2.39)) and high-pressure

(Eq. (2.40)) approximations. We find that the analytical expressions recreate the

indentation stiffness of long, thin cylindrical shells over almost all relevant pressures.

To illustrate the separation of the scales psc and |pc, cyl|, we also show the pressure
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using the alternate scaling pR3
y/D (upper horizontal axes), using the E. coli cell

wall parameters to connect the two scales. Since the resulting Föppl-von Kármán

number is very large, the criterion ℓp ≪ Ry for the validity of our shallow-shell

results is satisfied down to ηs,y ∼ 10−2. The inset verifies the predicted polynomial

scaling of the indentation stiffness at low pressures from Eq. (2.39), and shows that

the zero-pressure stiffness kasy,0 from Ref. 2, Eq. (2.36), is approached at ηs,y ≈ 0.005

(pR3
y/D ≈ 10). Although shallow-shell theory breaks down at this low pressure, we

expect that the true indentation behavior would cross over from our low-pressure

expression to kasy,0 around this pressure value.

2.3.7.4 Stiffness Switching. The high-pressure stiffness expression for cylinders,

Eq. (2.40), is very similar to that of a sphere with the same elastic properties, radius,

and internal pressure (Eq. (2.29)). To compare the relative indentation stiffness of

cylinders and spheres, we compute the ratio of the two expressions:

kcyl
ksph

≈
√
2
ln 2ηs,y
ln 8ηs,y

.

Notice that the ratio is equal to unity when ηs,y = 22
√
2+1 ≈ 14.2, beyond which long

cylindrical shells become locally stiffer than spherical shells with the same scaled

pressure. By contrast, the sphere was stiffer at zero pressure (Eq. (2.24)). We term

this phenomenon stiffness switching between long cylindrical and spherical shells.

In general, stiffness switching tends to occur between any pair of spheroidal shells

with different asphericities upon applying an internal pressure. The reason is as

follows. Eq. (2.24) implies that at low internal pressure, the indentation stiffness

is dominated by the Gaussian curvature K = 1
RxRy

= 1−β
Ry

2 . On the other hand,

R becomes the dominant radius parameter in the large-pressure limit, as one can
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TABLE 2.1. Summary of analytical results for indentation stiffnesses.

Condition Parameter ranges Equation
Doubly-curved shells at zero pressure p = 0,

√
Ryt ≪ Rx ≪ R2

y/t (2.24) or (??) 1

Spheroids at high internal pressure ηR ≫ 1 + |β|, −1 < β ≤ 1 (2.31) or (??)
Spheroids under external pressure close to local instability 1− p

pc
≪ 1, −1 < β < 1 (2.35) or (??)

Cylinders at low internal pressure D
R3

y
≪ p ≪ 4

√
DY

R2
y

, β = 1 (2.39) or (??)

Cylinders at high internal pressure p ≫ 4
√
DY

R2
y

, β = 1 (2.40) or (??)

rewrite the asymptotic indentation stiffness (the inverse of Eq. (2.33)) in a more

illuminating form,

k
ηR≫1≈ 4π

√
DY

R
ηR

ln 4ηR
=

πpR
ln 4ηR

=
πpRy

√
1 + β

ln 4ηR
,

whence the dominance of R becomes more manifest. Stiffness switching is hence

due to the fact that K and R have opposite β dependences: for a fixed Ry,
√
K is proportional to

√
1− β, while R to

√
1 + β. The phenomenon highlights

the contrasting contributions of geometry and internal pressure to the indentation

stiffness of spheroidal shells.

2.4 Discussion

We have analyzed the linear indentation response of thin spheroidal and

cylindrical shells under pressure, as a manifestation of geometric rigidity with

practical applications. While our analysis is enabled by the simplifying assumptions

of shallow-shell theory, we have identified parameter regimes for which these

assumptions are valid, which turn out to encompass nearly all shell geometries and

pressures which allow stable prestressed states. In addition to integral expressions

for the inverse of the stiffness which can be numerically evaluated (equations (2.23)

and (2.26)), we have derived analytical expressions in various limits which rigorously
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validate prior results and provide easy-to-evaluate expressions for the indentation

response as a function of geometric parameters, elastic properties, and pressure.

Table 2.1 provides a summary of these results including references to the relevant

expressions. For practical purposes, expressions written in terms of dimensionful,

measurable quantities are more straightforward to utilize; in light of this, we

also provide the relevant dimensionful expressions in Appendix B. We have also

validated a subset of our results against data from finite-element simulations of

indentation assays which were reported in Ref. 1 (Figure 2.3).

Besides predictions of the indentation stiffness, our results provide insights into

the nature of geometric rigidity and the influence of internal and external pressure.

We revealed a connection between the loss of stiffness and the buckling instability

of thin shells subjected to external pressure (2.3.4), and showed that the behavior

of the stiffness as the critical buckling pressure is approached differs qualitatively

for spherical and general spheroidal shells (2.3.6.2 and Figure 2.4). At large

internal pressures, we proposed a new length scale—the distensile curvature radius,

R (Eq. (2.32))—which captures the contribution of membrane prestresses to the

indentation stiffness in a manner akin to how the Gaussian curvature radius 1/
√
K

captured the geometric contribution. The contrasting behaviors of the distensile and

Gaussian curvatures as the asphericity is varied makes cylindrical shells weaker than

spherical shells of the same radius at low pressures, yet stronger at high pressures—a

phenomenon we termed stiffness switching. The loss of rigidity of oblate shells with

β ≤ −1 at positive internal pressures is also captured by the distensile curvature

taking on imaginary values.

Our result also provides new insights about the indentation stiffness of long, thin

cylindrical shells. Cylinder indentation was previously studied in the zero-pressure
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limit [2] and the membrane limit which incorporated the effects of pressure-related

stresses while ignoring elastic stiffness [3, 43]. We connect these disparate regimes

by exploiting a separation of pressure scales which arises for thin cylinders, which

allowed us to calculate the indentation stiffness of cylindrical shells over a wide range

of pressures (2.3.7 and Figure 2.5).

Our analysis points to several promising directions for future studies. While

we focused on pressurized spheroidal shells, our approach could be used to find

the indentation stiffness of any thin curved shell for which the in-plane stresses

in the vicinity of the indentation point are known, as long as shallow-shell theory

is applicable. For instance, the indentation stiffness of general ellipsoids could be

numerically evaluated, even away from high-symmetry points. The approach could

be extended to include the effects of a fluid or solid continuum in the shell interior,

as well as material anisotropy in the shell, all of which are particularly relevant to

biological structures. It would also be interesting to analyze the indentation behavior

beyond the linear regime, which would require extending the Pogorelov scaling for the

energetics of large inversions of spherical shells [13, 44, 45] to anisotropic geometries.

Understanding the large-inversion behavior would also provide insight into the post-

buckling shapes of general spheroids; in this regard, the case β ≤ −1 will be

particularly interesting since this type of shells has two buckling states for negative

and positive pressures. Finally, it would be interesting to extend our technique to

basis functions beyond the Fourier modes we use in our analysis, which would allow

us to tackle non-shallow-shells and to consider the effects of edge constraints (e.g.

indentation of clamped spherical caps).
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CHAPTER III

3.1 Introduction

Isotropic elasticity, which assumes material properties that are independent

of direction, provides a tractable and convenient description of many everyday

mechanical phenomena. However, direction-dependent mechanical properties are

the rule rather than the exception in natural materials, from muscle tissue [46]

and wood [47] to the cell walls of bacteria [48] and plants [11]. The mechanical

anisotropy is typically a result of high-strength filaments or fibers within these

materials that are oriented in a particular direction, strengthening the direction

and hence breaking the material rotational symmetry (i.e., isotropy) [8]. In the

technological realm, composite materials with directional reinforcements such as

plywood [49] and corrugated materials [7] are used to build structures that are

mechanically strong and resilient in desired directions; the elastic description of

these structures at length scales larger than the reinforcement features also requires

anisotropic material parameters.

Thin-walled elastic structures, or shells, provide a rich setting for interesting

elastic phenomena that arise from the interplay of material anisotropy and geometry.

For example, a thin cylindrical shell whose inner wall is wrapped helically by polymer

fibers can develop into a spiral shape upon expansion, which has been proposed as

a model for bacterial growth [50]. In engineered shell structures, closely spaced

ribs provide strength in high-stress directions with minimal addition of material in

e.g., masonry domes [51] and pressure vessels [52]; these directional reinforcements

strongly influence the failure modes of the shells [53] and can generate multistability
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(a) An orthotropic plate. (b) An orthotropic cylinder.

(c) An orthotropic spheroid.

FIGURE 3.1. Plates and shells with local rectilinear orthotropy. The two
material orthotropic directions are marked by different colors, the x1-direction by
red and x2-direction by blue. For all the three structures, these two directions
are also the principal directions of curvature. In this paper, we only consider
rectilinear orthotropy—shell sections that locally look like (a); shell regions that
are curvilinearly orthotropic, e.g., the poles of the orthotropic spheroid, are beyond
the scope of this study. For curved shells, (b) and (c), we take the x2-direction to be
the azimuthal direction, so R2 denotes the equatorial radius of the spheroid.

in shell conformations [54, 55, 56? ]. Besides its fundamental interest to mechanics,

the interplay of anisotropic elasticity, shell geometry and external loading is crucial

to our understanding of cell biophysics as well as to structural engineering.

One obstacle to building a fundamental understanding of shells with anisotropic

elasticity is that the reduction in material symmetries makes the governing

differential equations more challenging to solve. For instance, twenty-one

independent elastic constants are needed to fully characterize a three-dimensional

anisotropic material (while only two are needed in the isotropic case) [5, 7]. Here,
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we study a particular type of material anisotropy—two-dimensional orthotropic

materials (or equivalently thin three-dimensional transversely isotropic materials).

Such materials have different elastic properties along two orthogonal in-plane

directions, one of which has the same material composition as the material thickness

direction [49], see Fig. 3.1. This form of anisotropy provides a good approximation

to engineered thin-walled structures such as fiber-reinforced shells [7] check if this

is a good citation for this and shells with linear corrugations [? ]. Orthotropic

elasticity also arises as a natural consequence of the growth mechanism of rod-shaped

bacterial cell walls, in which stiff carbohydrate chains are laid down by molecular

complexes along the circumferential direction [? ? ? ] breaking local material

symmetry [43? ]. Orthotropy therefore serves as a tractable yet relevant model for

assessing the influence of material anisotropy on shell mechanics. Nevertheless, the

lowered symmetry of the governing shell equations has typically favored numerical

analyses of orthotropic shell response [53, 57? ? ? ? ], although a few analytical

results exist for buckling thresholds [58] and multistability criteria [54, 55, 56? ] of

orthotropic shells.

In this work, we establish an exact mapping between orthotropic and isotropic

shells, and apply this mapping to generate analytical results for the local mechanical

response of orthotropic shells. Specifically, we will demonstrate that although

the orthotropic materials still have a reduced symmetry compared to isotropic

materials, they become effectively isotropic under an appropriately chosen coordinate

transformation. A specific version of this isotropy-orthotropy equivalence have

been recognized for linear orthotropic plate equations [59, 60]; here, we rigorously

establish the equivalence using the tensor formulation of elasticity, and generalize it

to nonlinear deflections of curved shell sections described by shallow-shell theory [7].
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Under the aforementioned coordinate transformation, the orthotropic shallow-shell

equations are mapped to a system of equations describing a shallow shell made

of an isotropic material, but with different geometric parameters. We apply

the transformation to study local mechanical properties—linear response to an

indentation force [14, 21, 22, 61] and buckling load—of thin-walled structures

that are made of orthotropic materials. These local mechanical properties have

recently been established rigorously for isotropic shells with arbitrary curvatures

and pressures [4, 14, 61]; however, to our knowledge, our mapping enables the first

analytical results for the local response of orthotropic shells.

3.2 Background

We start with the elastic description for a two-dimensional1 orthotropic material,

which relates local strains to local stresses via a stiffness tensor. Let uαβ be the

covariant components of the strain tensor, and let σαβ denote the contravariant

components of the stress tensor; (α, β ∈ {1, 2}). The generalized Hooke’s law for an

orthotropic material is: uαβ = Cαβγδ σ
γδ, where C is the rank-four stiffness tensor [5].

(The Einstein convention of summation over repeated upper and lower indices is

1Realistically, every material has a finite thickness and is hence three-dimensional. The materials
considered here are effectively two-dimensional, i.e., so thin that the Kirchhoff-Love hypothesis [7]
applies.
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implied throughout the paper.) In Voigt notation, this reads [49]




u11

u22

u12




=




1

E1

−
υ12

E2

0

−
υ21

E1

1

E2

0

0 0
1

2G12







σ11

σ22

σ12




, (3.1)

where Eα and υαβ (α ̸= β) denote Young’s moduli and Poisson’s ratios along the

two orthogonal directions, respectively. In this paper, we consider the common case

where these elastic constants are all positive. By Betti’s reciprocal theorem [7],

υ12
E2

=
υ21
E1

. (3.2)

We can accordingly define a parameter which characterizes the degree of material

anisotropy:

λ :=
E1

E2

=
υ21
υ12

> 0. (3.3)

The positive definiteness of the stiffness matrix in Voigt notation, det
(
C[αβ][γδ]

)
> 0,

imposes an upper bound for the anisotropy parameter: λ < 1
υ2
12
. The Poisson’s ratio

υ12 can in principle be zero [62]; as a result, λ ∈ (0,∞) (recall that we assume

υ12, υ21 > 0). The inverse of λ, 1
λ
:= E2

E1
, also has the same range of values. In

practice, given a general two-dimensional orthotropic material, one is free to call

the first direction either of the two principal directions of the stiffness tensor C and

hence use either λ or 1
λ
to characterize the degree of material anisotropy.
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Because of Eq. (3.2), one only needs four independent parameters to fully

characterize a two-dimensional orthotropic material. We choose the four to be

Eeff :=
√
E1E2, υeff :=

√
υ12υ21, λ and G12. (We will see the reason for this choice

in Eq. (3.4) and 3.3.1.) The elastic constant G12 is the material’s in-plane shear

modulus and is, in general, an independent quantity. However, in practice it is

closely related to the Young’s moduli in the orthotropic directions. To eliminate this

degree of freedom, M. T. Huber proposed the following form for G12 [63],

G12
!
=

Eeff

2(1 + υeff)
=

√
E1E2

2(1 +
√
υ12υ21)

, (3.4)

substituting the geometric means of the anisotropic elastic constants as effective

constants into the expression of the shear modulus of an isotropic material. The

Huber form for the orthotropic shear modulus has been accepted and widely

employed in both analytical and numerical calculations [7, 53, 59, 64, 65]. Panc

demonstrated, based on theoretical arguments, that for orthotropic materials, the

Huber form may be used as an approximation [60]. Cheng and He further argued that

although the Huber form is itself inaccurate for fiber-reinforced composite materials,

it can still yield accurate analytical results when substituted in governing differential

equations of shell theory (at least for cylinders) [64].

The following result section is structured as follows. In 3.3.1, we introduce

the main result of this paper–the rescaling transformation which shows that an

orthotropic two-dimensional material becomes effectively isotropic if we use a rescaled

Cartesian coordinate system. In 3.3.2, we exploit the use of the transformation in

shallow-shell systems. We demonstrate that the general Donnell-Mushtari-Vlasov

(DMV) equations, the governing equations in the shallow-shell theory, are covariant

under the transformation and use the transformation to derive the DMV equations
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for orthotropic shells in a physically transparent manner. In 3.3.4 and 3.3.5, by

solving these equations, we obtain the indentation stiffness and buckling pressure of

orthotropic ellipsoids and cylinders.

3.3 Results

3.3.1 A Rescaling Transformation

Transformation Step 1.. We first notice that with the Huber form (Eq. (3.4)),

Eq. (3.1) can be rewritten, in terms of the effective elastic constants and the

anisotropy parameter λ, as




4
√
λu11

1

4
√
λ
u22

u12




=




1

Eeff

−
υeff

Eeff

0

−
υeff

Eeff

1

Eeff

0

0 0
1 + υeff

Eeff







1

4
√
λ
σ11

4
√
λσ22

σ12




. (3.5)

The stiffness matrix now takes the form of that for an isotropic material with elastic

constants {Eeff , υeff} [49]. Equation (3.5) in fact implies that an orthotropic material

can be treated as isotropic if we rescale physical quantities in a systematic way. This

can be seen more clearly using tensors. In tensor notation, Eq. (3.5) can be written

as uα′β′ = Cα′β′γ′δ′ σ
γ′δ′ . Primed indices are used here to denote the transformed

tensor components:

uα′β′ = Λα
α′ Λβ

β′ uαβ, (3.6, a)

σα′β′
= Λα′

α Λ
β′

β σ
αβ (3.6, b)
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and

Cα′β′γ′δ′ = Λα
α′ Λβ

β′ Λγ
γ′ Λδ

δ′ Cαβγδ, (3.6, c)

where (Λi
i′) := diag

{
8
√
λ, 1

8√
λ
, 1
}
, and Λi

i′ Λ
i′
j = δij with δij the Kronecker delta.

(Latin indices run from 1 to 3, while Greek indices only take on values 1 and 2.) That

is, when written in terms of the rescaled tensor components, the anisotropic Hooke’s

law takes the isotropic form. This shows that the orthotropic material becomes

effectively isotropic if we hide the material anisotropy by rescaling the strain and the

stress components. We note that this rescaling transformation preserves the elastic

energy density: 1
2
uαβ σ

αβ = 1
2
uα′β′ σα′β′

.

In fact, the total elastic energy is also invariant under the transformation.

Equations (3.6) hint at the following coordinate transformation:

xi′ = Λi′
j x

j. (3.7)

Let gij denote the unscaled components of the metric tensor; its rescaled components

can then be computed: gi′j′ = Λi
i′ Λ

j
j′ gij. Note that det(gi′j′) = det(gij), since

det(Λi
i′) = 1. This further implies that

U =
1

2

∫

M

√
det(gij) d

2xuαβ σ
αβ =

1

2

∫

M′

√
det(gi′j′) d

2x′ uα′β′ σα′β′
, (3.8)

i.e., the total energy is preserved.

Transformation Step 2.. The strain tensor is related to deformation displacement

fields via the so-called strain-displacement relations. We are now going to

demonstrate that the rescaling transformation is compatible with these relations.

Since all materials are three-dimensional, we will use the relations for a thin curved
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material (i.e., a shallow shell) that satisfies the Kirchhoff-Love hypothesis [7], which

basically assumes that no deformation occurs along the thickness direction.

For such a shell, the Green-Lagrange strain tensor is given, in terms of two in-

plane phonon fields uα(x) and one out-of-plane deformation field u3(x), by [7? ]

uαβ =
1

2
(∂αuβ + ∂βuα + ∂αu3 · ∂βu3)−K0

αβ u3 − x3 ∂α∂βu3, (3.9)

where ∂α ≡ ∂
∂xα , and (K0

αβ) = diag {κ1, κ2} is the extrinsic curvature tensor that

encodes the two local principal curvatures of the material’s undeformed middle

surface. For a sphere with radius R, K0
αβ = 1

R
δαβ , while a cylinder of the same

radius has K0
αβ = 1

R
δ1α δ

1
β (or K0

αβ = 1
R
δ2α δ

2
β). The last term in Eq. (3.9) is the

bending strain [7], where x3 denotes the distance away from the middle surface.

The rescaled components can then be written, using Eq. (3.6, a), as

uα′β′ =
1

2

[
(Λα

α′ ∂α)
(
Λβ

β′ uβ

)
+
(
Λβ

β′ ∂β
)
(Λα

α′ uα) + (Λα
α′ ∂α)u3 ·

(
Λβ

β′ ∂β
)
u3

]
−

−
(
Λα

α′ Λβ
β′ K0

αβ

)
u3 − x3 (Λα

α′ ∂α)
(
Λβ

β′ ∂β
)
u3

=
1

2
(∂α′uβ′ + ∂β′uα′ + ∂α′u3′ · ∂β′u3′)−K0

α′β′ u3′ − x3′ ∂α′∂β′u3′ .

(3.10)

For the sake of consistency, we have written in the above equation x3′ = Λi
3′ xi = x3

and u3′ = Λi
3′ ui = u3. Note that both the coordinate and the displacement along

the thickness direction remain unrescaled.

Equations (3.9) and (3.10) take exactly the same form. This means that rescaling

the underlying deformation displacement fields can indeed lead to the rescaled strain-

tensor field, indicating the compatibility between the rescaling transformation and

the strain-displacement relations. The only difference between the two equations is
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that the extrinsic curvature tensor, in the rescaled coordinate system, now becomes

(K0
α′β′) = diag {κ1′ , κ2′} := diag

{
4
√
λκ1,

1
4
√
λ
κ2

}
. (3.11)

This shows that the material’s middle surface has a different local geometry in the

rescaled coordinate system. For example, a sphere with radius R becomes locally an

ellipsoid with principle radii of curvature 1
4√
λ
R and 4

√
λR. Nonetheless, note that the

local Gaussian curvature remains unchanged:

K ≡ det(K0
αβ) = κ1κ2 = det(K0

α′β′) ≡ K ′; (3.12)

while the other invariant of the extrinsic curvature tensor, the local mean curvature

H ≡ 1
2
tr(K0

αβ) does not remain invariant under the rescaling:

H =
1

2
(κ1 + κ2) ̸=

1

2
(κ1′ + κ2′) =

1

2
tr(K0

α′β′) ≡ H ′. (3.13)

To sum up, we have established a curious rescaling transformation (Eqs. (3.7)

and (3.6)), assuming the Huber form for the orthotropic in-plane shear modulus.

The transformation implies that under certain circumstances, such as cases where

shear deformations are negligible, an orthotropic material can exhibit similar elastic

behaviors as an isotropic one with different local geometrical properties.

It should be pointed out that we have made a couple of assumptions when

establishing the above equivalence relationship. The first one is that the material-

orthotropy pattern must be rectilinear (i.e., can be characterized locally by a

Cartesian coordinate system), not curvilinear, and the two orthogonal directions

have to coincide with directions of local principal curvatures. Also, the form of
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the strain tensor, Eq. (3.9), implicitly requires that the deformation displacements

vary rapidly, on the scale of curvature radii, along the principal directions, i.e.,
∣∣∣ 1
uβ
∂αuβ

∣∣∣≫ 1
min{R1,R2} , where Rα ≡ 1

κα
[7]. Given that λ is of order one, which implies

that 8
√
λ is approximately unity, the same requirement in the rescaled coordinate

system,
∣∣∣ 1
uβ′

∂α′uβ′

∣∣∣≫ 1
min{R1′ ,R2′}

, can accordingly still be satisfied. In the context of

thin shells, this means that a shallow shell remains shallow after getting rescaled.

We now move on to discuss several implications of the established equivalence

relationship. The first and foremost perhaps is that we can effortlessly obtain,

without performing any functional analysis, the equation of equilibrium and the

compatibility equation for an orthotropic doubly-curved shallow shell. The equations

will be presented in a covariant way, in tensor notation, to illustrate that they are

form-invariant under the rescaling transformation.

3.3.2 Equations of the Shallow-Shell Theory

Recall that we have demonstrated that an orthotropic shallow shell with the set

of parameters {E1, υ21, λ;R1, R2} shares the same total-energy functional with an

isotropic one whose corresponding parameters are given by
{
Eeff ≡ √

E1E2, υeff ≡
√
υ12υ21;R1′ ≡ R1

4√
λ
, R2′ ≡ 4

√
λR2

}
. Since minimizing the total-energy functional gives

the equation of equilibrium (EOE), we conclude that the EOE for the orthotropic

shell will be the same as the corresponding isotropic EOE when written in terms of

rescaled quantities:

D′£′ u3′ + σα′β′
t′
(
K0

α′β′ −∂α′∂β′u3′
)
= p′

(
xα′
)
, (3.14, a)
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where D′ := Eeff t
3

12(1−υ2
eff)

is the effective bending modulus; t = t′ the shell thickness;

and p′ describes the load applied to the shell. The operator £′ denotes the linear

differential operator ∂4

∂x′4 +2 ∂2

∂x′2
∂2

∂y′2
+ ∂4

∂y′4
.2 Note that in spite of its appearance, £′

is in fact not the biharmonic operator in the rescaled coordinate system.3

Recall that the strain-displacement relations (Eq. (3.9)) also take the same form

in both coordinate systems. By the same reasoning, the fact that the compatibility

equation stems from strain-displacement relations [66] implies that for the orthotropic

shell, the compatibility equation is given by

1

Y ′ £
′Φ′ = εα

′γ′
εβ

′δ′∂γ′∂δ′u3′

(
K0

α′β′ −1

2
∂α′∂β′u3′

)
, (3.14, b)

where Y ′ := Eefft is the effective two-dimensional Young’s modulus. The Airy stress

function Φ′ is a scalar field and hence unrescaled, i.e., Φ′ (xα′)
= Φ(xα). It is related

to the rescaled stress components in the following way:

σα′β′
t′ = εα

′γ′
εβ

′δ′∂γ′∂δ′Φ
′, (3.15)

where εα
′β′

is the rescaled components of the two-dimensional alternating tensor.

2The fully covariant way of writing the operator is Dαβγδ ∂α∂β∂γ∂δ, where D denotes the
bending-stiffness tensor: In Voigt notation,

(
D[αβ][γδ]

)
=




D1111 D1122 D1112 D1121

D2211 D2222 D2212 D2221

D1211 D1222 D1212 D1221

D2111 D2122 D2112 D2121


 = D′




√
λ υeff 0 0

υeff
1√
λ

0 0

0 0 1−υeff

2
1−υeff

2

0 0 1−υeff

2
1−υeff

2




,

again using the Huber form.

3The Laplacian operator, or rather the Laplace-Beltrami operator, in the rescaled coordinate

system, which is non-Euclidean, is ∆′ ≡ 1√
g′ ∂α′

(√
g′gα

′β′
∂β′

)
= 1

4√
λ

∂2

∂x′2 + 4
√
λ ∂2

∂y′2 , where g′ ≡
det(gα′β′).
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Equations (3.14) are the nonlinear shallow-shell equations for the orthotropic

shell. The linearized version can be obtained via the procedure outlined in Ref. 7;

the results are shown below:

D′ £′ u3′ + σα′β′
t′ K0

α′β′ −σα′β′
0 t′∂α′∂β′u3′ = 0 (3.16, a)

Y ′εα
′γ′
εβ

′δ′ K0
α′β′ ∂γ′∂δ′u3′ = £′ Φ′, (3.16, b)

where σα′β′
0 denotes the rescaled prestress components. Equations (3.16) are

consistent with known expressions in the literature [? ]. Equations written in terms

of unrescaled quantities without tensor notation can be found in Appendix C.

The linearized equations can be employed to study the local indentation stiffness

of a shell subject to a concentrated load and to perform linear buckling analysis [?

], which will be the topics for the following discussions.

3.3.3 Re-Deriving Some Established Results Using the Rescaling

Transformation

We first demonstrate the convenience of the rescaling transformation by deriving

the buckling load of orthotropic cylinders and plates from the corresponding isotropic

expressions. Our results are consistent with the established expressions in literature.

3.3.3.1 Long Cylindrical Shells.

Edge Load.. By “edge load” we mean the load applied at the ends of an open

cylindrical shell; it has units of Pascal. Paschero and Hyer have observed the curious

fact that the critical edge load of an orthotropic cylinder, when the real in-plane

shear modulus is large enough (so that shear deformations are negligible), is exactly
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the classical buckling load of an isotropic cylinder with elastic constants Eeff and

υeff [65]. The rescaling transformation provides an explanation for this fact. The

isotropic critical axial stress is in this case [7]

σ11
c, iso =

E√
3(1− υ2)

t

R
. (3.17)

Since an orthotropic cylinder can be treated effectively as isotropic with a modified

radius, we can use the same formula to write the rescaled orthotropic critical stress:

σ1′1′
c, ortho =

Eeff√
3(1− υ2

eff)

t

R′ . (3.18)

Now recall that σ1′1′ = 1
4√
λ
σ11, and R′ = 4

√
λR. Substituting these into the above

expression will yield the desired result

σ11
c, ortho =

Eeff√
3(1− υ2

eff)

t

R
. (3.19)

Surface Load.. In this case, a uniform pressure is applied at the outer surface of an

open cylindrical shell. The isotropic critical circumferential stress is known as [7]

σ22
c, isot =

D

R2

(
n2 − 1

)
≡ D

R2

(
n2 − n2

min

)
, (3.20)

where n is the number of half-waves in the circumferential direction. To obtain the

orthotropic critical stress, we again substitute into the above expression the effective
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elastic constants and the rescaled quantities:

σ2′2′
c, orthot =

D′

R′2

(
n′2 − n′

min
2
)

4
√
λσ22

c, orthot =

√
λDθ√
λR2

(
4
√
λn2 − 4

√
λ
)
;

(3.21)

n′ = R′
R

y
y′n = 8

√
λn is the rescaled half-wave number (see Eq. (E.13)). That it is not

integral and related to the anisotropy parameter λ arises from the following fact.

Although distances and radii of curvature have the same dimension, the former are

related to the square root of the metric, while the latter get rescaled in the same

way as the metric since both the extrinsic curvature tensor and the metric tensor are

rank-two. Cancelling all factors involving λ, we get

σ22
c, orthot =

Dθ

R2

(
n2 − 1

)
, (3.22)

which is consistent with the result by Wang et al. [67].

3.3.3.2 Plates. We consider here a rectangular orthotropic plate which is subject

to in-plane compressive forces. The edges of the plate are simply supported; in

other words, bending moments shall vanish along the edges which are held fixed

but allowed to rotate during a deformation event (see Eqs. (3.23)). We assume that

shear deformations are negligible. In this case, the rescaling transformation maps

the orthotropic plate with parameters {E1, υ21, λ; a, b;σ
11} to an isotropic plate with

parameters
{
Eeff , υeff ; a

′ = a
8√
λ
, b′ = 8

√
λb;σ1′1′

}
. (See Fig. 3.2 for labels.) It should

be pointed out that the orthotropic boundary conditions also become effectively
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FIGURE 3.2. A rectangular plate with side lengths a and b, being compressed
horizontally. The intensity of the forces is p, which equals σ11t by force balancing at
equilibrium.

isotropic, i.e.,





u3|x=0,a
y=0,b

= 0,

(
∂2u3

∂x2 + υ12
∂2u3

∂y2

)∣∣∣∣
x=0,a

= 0,

(
∂2u3

∂y2
+ υ21

∂2u3

∂x2

)∣∣∣∣
y=0,b

= 0,

7→





u3|x′=0,a′
y′=0,b′

= 0,

(
∂2u3

∂x′2 + υeff
∂2u3

∂y′2

)∣∣∣∣
x′=0,a′

= 0,

(
∂2u3

∂y′2
+ υeff

∂2u3

∂x′2

)∣∣∣∣
y′=0,b′

= 0.

(3.23)

Therefore, the transformation only affects the way how quantities get “measured”

but does not change the system physically.

The resulting deformations manifest themselves as elastic waves. These waves

are subject to the boundary conditions, Eqs. (3.23), and hence take the form

Amn sin
(
mπx
a

)
sin
(
nπy
b

)
, where Amn is the wave amplitude, and m (n) denotes the

number of half-waves propagating along the horizontal (vertical) direction. Because

x and a (y and b) rescale in the same way, m′ = m (n′ = n), i.e., the half-wave

numbers are invariant in this case (cf. Eqs. (3.21)).
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For an isotropic plate, the intensity of the load that gives rise to waves of a

particular (m,n) is given in Ref. 7:

σ11
isot =

π2D

b2

(
mb

a
+ n2 a

mb

)2

. (3.24)

The corresponding orthotropic stresses are hence

σ1′1′
orthot =

π2D′

b′2

(
mb′

a′
+ n2 a′

mb′

)2

(3.25, a)

σ11
orthot =

π2

b2

[
D1

(
mb

a

)2

+ 2D′n2 +D2n
4
( a

mb

)2
]
, (3.25, b)

which agrees with the known expression in the literature [7]. Its global minimum,

with respect to the half-wave numbers, is the critical stress.4

In contrast to plates and singly-curved cylindrical shells with orthotropy, few

exact results exist for the mechanical response of doubly-curved orthotropic shells.

As a concrete application of our mapping, we next show that patches of orthotropic

spheroidal shells transform locally to isotropic spheroidal shells with a different

geometry, and use this mapping to derive new results for the indentation stiffness

and buckling load of general orthotropic spheroidal shells.

3.3.4 Indentation Stiffness of Orthotropic Spheroidal Shells

3.3.4.1 The Zero-Pressure Case.

4If the real shear modulus G12 deviates much from the Huber form, to obtain the orthotropic

stress, we can simply replace D′ in Eq. (3.25, b) with H = G12t
3

6 +D1υ12, the real bending stiffness
that penalizes twisting deformations (which reduces to D′ when assuming the Huber form).
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General Doubly-Curved Shells.. For this simple case, σα′β′
0 = 0, and an extra

term, −Fδ(x1)δ(x2), needs to be included on the right-hand side of Eq. (3.16, a)

to model the concentrated load at the origin, where F denotes the load strength,

and δ(x) is the Dirac delta function. Note that because of the scaling property of

the delta function, δ(ax) = 1
|a|δ(x), the load strength does not need rescaling, i.e.,

Fδ(x1)δ(x2) = Fδ
(
x1′
)
δ
(
x2′
)
≡ F ′δ

(
x1′
)
δ
(
x2′
)
.

The indentation stiffness is defined as

k := − F

u3(0, 0)
= − F ′

u3′(0, 0)
, (3.26)

where u3(0, 0) is the transverse displacement of the shell at the origin in response to

the indentation load. As shown in to Ref. 4, the inverse of the indentation stiffness

at zero pressure is given by the following definite integral:

1

k0
=

1

4π2

∫

R2

Q dQ dφ

D′Q4 + Y ′
(

1

R2′
cos2 φ+

1

R1′
sin2 φ

)2 , (3.27)

where the integration variables Q and φ are related to wavevectors, q =
(
q1

′
, q2

′)
,

in the following way: q1
′
= 1

4√
λ
Q cosφ and q2

′
= 4

√
λQ sinφ. The fact that Q2 =

√
λ
(
q1

′)2
+ 1√

λ

(
q2

′)2
implicitly reflects that the metric of the rescaled Fourier space

is non-Euclidean, resulting from the original material orthotropy.

Evaluating the integral in Eq. (3.27) gives

k0 = 8
√
D′Y ′

√
K ′ =

4Eefft
2

√
3 (1− υ2

eff)

1√
R1R2

=
4
√
E1E2t

2

√
3 (1− υ12υ21)

1√
R1R2

. (3.28)

Equation (3.28) clearly shows the separate contributions of geometry and material

anisotropy to the indentation stiffness. As in the isotropic case, the Gaussian
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curvature, K = K ′ = 1/(R1R2), is still the dominant geometrical quantity

that governs shell stiffness at zero pressure [4, 61]. Heuristically, we could have

anticipated this K dependence based on the fact that K is invariant under our

rescaling transformation (Eq. (3.12)), and therefore captures the geometric rigidity

independently of how the rescaling is performed.

Just as the geometric contribution is captured by the geometric mean of the

two curvatures, effects of material anisotropy also come in the form of geometric

mean, Eeff =
√
E1E2 and υeff =

√
υ12υ21. These geometric-mean dependences

are consistent with the requirement of invariance of the indentation stiffness under

coordinate transformations. Consider the equator of an orthotropic sphere. We call

the local polar (meridional) and azimuthal (zonal) direction the first and the second

direction, respectively, i.e., θ ≡ x1 and ϕ ≡ x2. Assume that the shell is strengthened

along the first direction, i.e., E1 > E2. We now rotate our local coordinate system

clockwise by ninety degrees, so that x1 7→ −x2, and x2 7→ x1. The rotation leaves us

with the same spherical shell locally but with the second direction strengthened. We

can infer two conclusions from this simple argument. First, any local elastic property

around the equator of an orthotropic sphere should exhibit an exchange symmetry:

Interchanging 1 and 2 does not make a difference. Second, if material anisotropy and

geometry affect shell elasticity locally separately from one another, then for shells

of any type, their local elastic properties should depend on combinations of elastic

constants which are invariant under the interchange 1 ↔ 2.

More generally, local elastic properties should be functions of invariant quantities

constructed from the corresponding tensors. In our problem, such examples are

furnished by the Gaussian curvature (the square root of the extrinsic curvature

tensor’s determinant) as well as the combination 1−υ12υ21
E1E2

, which happens to be
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the determinant of the stiffness matrix C[αβ][γδ] (Eq. (3.1)), if we assume that the

deformation is axisymmetrical, i.e., ignoring G12. (We can to some extent rule out

taking the trace of these tensors based on the fact that these traces are not invariant

under the rescaling transformation, such as the local mean curvature (Eq. (3.13)).)

For general ellipsoidal shells of revolution, material properties are usually different

along the polar and azimuthal direction, which are also the principal directions of

such shell surfaces [68]. Therefore, according to the shallow-shell theory, for these

shells, Eq. (3.28) can be applied almost globally, except at the two poles, where the

material-orthotropy pattern becomes curvilinear. Nevertheless, if we think of the

local indentation stiffness as a function of positions on the shell surface and consider

only small deformations, one can imagine that taking the analytical continuation of

the function to the poles will imply that Eq. (3.28) can be still valid there. We will

prove this claim in Appendix D.

Long Cylindrical Shells.. As for their isotropic counterparts [4], the case of long

orthotropic cylinders also requires special attention. Following the analysis by Yuan

on isotropic cylinders [16], we apply the rescaling transformation and accordingly

obtain the following expression for the zero-pressure stiffness of orthotropic cylinders

(see Appendix E for details):

k0
cyl(λ) ≈

1
4
√
λ

2π

3
√
2 (1− υ2

eff)

Eefft
3

R2

( ∞∑

n=1

1

n3

√
1 + Ξn

Ξn

)−1

, (3.29)

where Ξ2
n := 1 +

3(1−υ2
eff)

4n4

(
R
t

)2
. The dependence of the stiffness expression on the

cylinder’s thickness and radius in the thin-shell limit (R/t ≫ 1) is obtained by

keeping the leading term of the series in Eq. (3.29), which dominates when R
t
is
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sufficiently large:

k0
cyl(λ) ≈

1
4
√
λ

2π

3
√
2 (1− υ2

eff)

Eefft
3

R2

√
Ξ1 ≈

1
4
√
λ

π

[3 (1− υ2
eff)]

3
4

Eefft
5
2

R
3
2

. (3.30)

For isotropic (λ = 1) cylinders with a negligible Poisson’s ratio (υ ≈ 0), Eq. (3.30)

becomes

k0
cyl(λ = 1) ≈ 1.38

Et
5
2

R
3
2

. (3.31)

Equation (3.31) matches exactly, including the order-one prefactor, with the

expression obtained by de Pablo et al. [? ].

From Eq. (3.29), we observe that the zero-pressure indentation stiffness for

long cylinders depends on the anisotropy parameter λ both implicitly (through

the anisotropic elastic constants absorbed into Eeff and υeff) and explicitly (in

the 1/ 4
√
λ factor), unlike the stiffness of orthotropic doubly-curved shells whose λ-

dependence is purely implicit (see Eq. (3.28)). The explicit λ-dependence breaks the

aforementioned local exchange symmetry and is a consequence of the fact that open

cylinders can deform isometrically (see 3.3.4.2).

Figure 3.3 illustrates the λ-dependence in the indentation stiffness of different

types of shells in the absence of pressure. The k̃-axis denotes the nondimensionalized

indentation stiffness. We used as our stiffness scale the zero-pressure stiffness of a

corresponding isotropic shell with {E = E1, υ = υeff , R = R2} (for spheroids, the

chosen isotropic shell is a spherical shell with the same equatorial radius). This

stiffness scale was chosen to show both the implicit and explicit λ-dependences as well

as the dependence on Gaussian curvature for doubly-curved shells (Eq. (3.28)). From

the top inset of Fig. 3.3, we can see that the indentation stiffness of doubly-curved

shells all scales as 1√
λ
, which shows the dependence on Eeff (since Eeff = E1/

√
λ). On
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the other hand, the stiffness of long cylinders has a λ-dependence given by 1
4√
λ3
; this

is a combination of the same Eeff dependence and the explicit 1
4√
λ
factor in Eq. (3.29).
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FIGURE 3.3. Zero-pressure indentation stiffness of four different types of orthotropic
shells with varying values of the anisotropy parameter λ. Symbols denote data
obtained from COMSOL simulation. Solid curves correspond to the analytical
expressions Eqs. (3.28) and (3.30). For doubly-curved shells, β0 = 0,±0.5, their

stiffness is scaled by 4E1t2√
3(1−υ2

eff)
1
R2
. On the other hand, the stiffness of cylinders,

β0 = 1, is scaled by π

[3(1−υ2
eff)]

3
4

E1t
5
2

R
3
2
. The insets show the same data on double-log

scale to demonstrate that the scaled stiffness of cylinders depends on λ differently
from that of doubly-curved shells.

3.3.4.2 The Pressurized Case. We now consider the indentation stiffness of

closed orthotropic shells subjected to a uniform pressure. This situation is relevant to

biological shell-like structures, which often experience high turgor pressures; varying

the pressure also provides a route to modifying the shape and stiffness of artificial

shells [53, 69].

In the absence of indenting forces, the pressurized shell deforms from its original

shape to attain a new equilibrium in which in-plane stresses balance the transverse

loads due to the pressure. The indentation forces and deflections are then calculated

with reference to this prestressed state. For thin shells, the indentation response

is still a local property of the geometry, elasticity, and prestresses in the vicinity
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of the indentation point, and a shallow-shell description of the local response will

suffice to calculate the indentation stiffness. However, the prestressed state itself

depends on the global shell shape—it is not determined solely by local properties [59].

For thin spheroidal and cylindrical orthotropic shells, these prestress configurations

in response to a uniform pressure are known as a function of pressure and global

geometry [7], and are independent of the elastic properties of the shell as long as the

deformations in response to the pressure are small. We will use these prior results as

inputs to our rescaled theory, which we then use to calculate the indentation stiffness

as a function of geometry and pressure.

General Spheroids.. Spheroids are ellipsoids of revolution. We are interested in the

local indentation stiffness around a spheroid’s equator. As in our previous work [4],

we use β0 := 1 − R2

R1
to characterize the asphericity of a spheroid, where R2 is the

radius of its equator, and 1
R1

is the local principal curvature along the meridional

direction for points on the equator. In the vicinity of the equator, the prestress

components are given by σ11
0 t = 1

2
pR2, σ

22
0 t = 1

2
pR2(1+β0) and σ12

0 t = 0 [7], where p

denotes the uniform pressure to which the spheroid is subject.5 The sign convention

for the pressure is that a positive (negative) p means an internal (external) pressure.

Following the same procedure as the zero-pressure case, we obtain the inverse of

the indentation stiffness which is now a function of three parameters, namely, the

scaled pressure ηs,y(λ) =
pR2

2

4
√

D′(λ)Y ′(λ)
, the asphericity β0 as well as the anisotropy

5We would like to mention that an orthotropic spheroid shares the same prestress as the
corresponding isotropic one with the same geometry only on regions that are far away from the two
poles [70, 71].
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parameter λ explicitly :

1

k(ηs,y(λ), β0, λ)
=

1

8π2

√
R2

2′

D′Y ′

∫ 2π

0

dφ×

×
∫ +∞

0

du

u2 + 2ηs,y
(
1 + β′

λ sin
2 φ
)
u+

(
1− β′ sin2 φ

)2 ,
(3.32)

where β′ := 1−
√
λ(1−β0) and β′

λ := 2
√
λ−2+β′ appear to couple the geometry and

the material anisotropies. Nonetheless, it turns out that these explicit λ-dependences

are spurious, as we will now demonstrate. The double integral in Eq. (3.32) can be

evaluated in the following closed form (see Appendix F for details):

1

k(ηs,y(λ), β0)
=

1

2π

√
R2

2

D′Y ′
1√

1− β0

1√
(1− ηs,y)(1 + αηs,y)

×

× F

(
1

2
arccos ηs,y

∣∣∣∣−
2(1− α)ηs,y

(1− ηs,y)(1 + αηs,y)

)
,

(3.33)

where α :=
1+β′

λ

1−β′ = 1+β0

1−β0
is independent of λ, and F (ϑ |C2 ) denotes the incomplete

elliptic integral of the first kind:

F
(
ϑ
∣∣C2

)
:=

∫ ϑ

0

dφ√
1− C2 sin2 φ

. (3.34)

Equation (3.33) is the primary result of this work: by applying the rescaling

transformation, we have obtained a closed-form expression for the equatorial

indentation stiffness of pressurized orthotropic spheroids, provided that the material

anisotropy directions align with the latitudinal and longitudinal directions as shown

in Fig. ??. As a consistency check, setting β0 = 0 (R1 = R2 = R) and λ = 1
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(Eeff = E and υeff = υ) reduces Eq. (3.33) to, after taking the inverse,

k(ηs,y(1), 0) =
2π

√
DY

R

√
1− η2

F

(
1

2
arccos η |0

) =
8
√
DY

R

√
1− η2

1− 2

π
arcsin η

, (3.35)

which recovers the established result of the indentation stiffness of pressurized

isotropic spherical shells [14? ].

Equation (3.33) demonstrates that the indentation stiffness depends on the

anisotropy parameter λ only implicitly via the coupling constants D′ =
√
D1D2

and Y ′ = Eefft ≡
√
E1E2t. In other words, the only effect of material anisotropy is

modifying the elastic constants. As a consequence, our previous analysis on the

behavior of the stiffness integral in different parameter regimes [4] should carry

over to the orthotropic case. In particular, it was established in Ref. 4 that at

high pressures, the geometry of the spheroid becomes less relevant and instead the

indentation response is dominated by a new length scale—the radius of distensile

curvature, defined as

R ≡ 1

p

√
det
(
σαβ
0 t
)
;

the indentation stiffness for arbitrary isotropic ellipsoids at high pressure approaches

that of a sphere of radius R experiencing a non-dimensionalized pressure ηR ≡

pR2/(4
√
DY ). For anisotropic spheroids, we expect the same behavior provided

the geometric-mean coupling constants D′ and Y ′ are used in the rescaling.

This expectation is confirmed in Fig. 3.4, which reports simulation data and

theoretical predictions for the indentation stiffness of pressurized shellsas a function

of pressure over a range of geometry and anisotropy values. The data have

been nondimensionalized using scales related to the radius of distensile curvature.
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Theoretical curves and simulation data for different shell geometries converge in the

limit ηR ≫ 1, mirroring the behavior of isotropic shells reported in FIG. 3 of Ref. 4.

Long Cylindrical Shells.. It is possible to attain the indentation stiffness of long

pressurized cylinders directly from Eq. (3.33) by taking the limit β0 → 1− and

invoking the L’Hôpital’s rule repeatedly. As a more direct approach, we first impose

that limit in Eq. (3.32) and then evaluate the resulting definite integral. By doing

so, we get, after some calculations (see Appendix F),

1

k(ηs,y(λ), 1)
≡ 1

kcyl(ηs,y(λ))
=

1

4π

√
R2

D′Y ′
1

√
ηs,y

∫ +∞

0

dx√
x4 + 2ηs,yx2 + 1

=
1

4π

√
R2

D′Y ′
1

√
ηs,y

K

(
1

2
(1− ηs,y)

)
,

(3.36)

where R ≡ R2 is the radius of cylinders, and K (C2) denotes the complete elliptic

integral of the first kind:

K
(
C2
)
:= F

(π
2

∣∣C2
)
=

∫ π
2

0

dφ√
1− C2 sin2 φ

. (3.37)

The fact that K (C2) is analytic for |C| < 1 indicates that when 0 <

ηs,y ≪ 1, kcyl(ηs,y(λ)) ∝ √
ηs,y for orthotropic cylinders, just like their isotropic

counterparts [4].

We here provide an explanation for the physical origin of the square-root

dependence on pressure. It comes from the fact that an open cylindrical shell can

bend or flatten without stretching [5]. This can be seen qualitatively as follows; for

the sake of simplicity, we will first consider the isotropic case (setting λ = 1) and

hence temporarily drop the primes. For cylinders under an inextensible deformation,

D
R3 , instead of 4

√
DY
R2 , is the more appropriate pressure scale since it does not contain
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the two-dimensional Young’s modulus which penalizes stretching. We can therefore

write pressure in this case as p = Cp
D
R3 with Cp some pressure-dependent constant

and

ηs,y :=
pR2

4
√
DY

=
1

4
√
γ

pR3

D
=

Cp

4
√
γ
, (3.38)

where γ denotes the Föppl-von Kármán number: γ := Y R2

D
≃ 10

(
R
t

)2 ≫ 1.

Substituting Eq. (3.38) into Eq. (3.36), we find, after taking the inverse,

kcyl(ηs,y) ∝
√

Cp
Et

5
2

R
3
2

(3.39)

for low pressures (ηs,y ≪ 1, so that K
(
1
2
(1− ηs,y)

)
≈ K

(
1
2

)
). The characteristic

dependence on t and R is the very consequence of an inextensible deformation (cf.

Eq. (3.30)) [? ].

We can utilize the same approach to demonstrate that the stiffness of orthotropic

cylindrical shells depends on λ explicitly at low pressures, and moreover, this explicit

λ-dependence is indeed given by 1
4√
λ
, as shown in Eq. (3.29). For an orthotropic

cylinder, the pressure scale which corresponds to a flattening of the surface is Dθ

R3

(see Eq. (3.22)). We then write p = Cp
Dθ

R3 and

ηs,y :=
pR2

4
√
D′Y ′

=
1

4
√
γeff

pR3

D′ =
Dθ

D′
Cp

4
√
γeff

=
1√
λ

Cp

4
√
γeff

(3.40)

with γeff := Y ′R2

D′ . It follows that after substitution,

kcyl(ηs,y(λ), λ) ∝
1
4
√
λ

√
Cp

Eefft
5
2

R
3
2

. (3.41)
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FIGURE 3.4. Indentation stiffness of orthotropic shells of five different geometries
(β0’s) and four degrees of anisotropy (λ’s) as a function of pressure. Symbols denote
data obtained from COMSOL simulation. Solid curves correspond to the analytical

expression Eq. (3.33). Data are scaled using the stiffness scale
√

D′Y ′
R2

2(1+β0)
and the

pressure scale 4
√
D′Y ′

R2
2(1+β0)

to match FIG. 3 in Ref. 4.

3.3.5 Buckling Load of Orthotropic Spheroids under Uniform

Pressure

3.3.5.1 General Spheroids.

External Buckling Pressure.. When a curved shell buckles under a uniform pressure,

it also becomes locally soft, i.e., its indentation stiffness vanishes, because of the

emergence of an unstable mode, for which the integral in Eq. (3.32) diverges [4].

We can then obtain the local buckling pressure around the equator of such shells by

studying the zeros of k(ηs,y(λ), β0) for a given β0. We can read off the zeros directly
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from Eq. (3.33) and hence acquire the nondimensionalized buckling pressure:

ηc =





−1, for the oblate (β0 ≤ 0),

−1− β0

1 + β0

, for the prolate (β0 > 0).

(3.42, a)

Recall that the pressure scale used in Eq. (3.33) is psc :=
4
√
D′Y ′
R2

2
. The dimensionful

buckling pressure is thus

pc := ηcpsc =





−4
√
D′Y ′

R2
2

, for β0 ≤ 0,

− 4
√
D′Y ′

2R1R2 −R2
2

, for β0 > 0.

(3.42, b)

As was the case with the indentation stiffness expression, the local buckling

pressure of orthotropic spheroids (both prolate and oblate) is exactly that of the

corresponding isotropic shells [4] with the same geometry and with geometric-mean

elastic constants taking the place of the isotropic elasticity parameters. This fact

again shows that that the main effect of material anisotropy is to modify the elastic

constants; the geometric contribution (radius dependence of the buckling pressure)

is not affected. Our result is consistent with the established expression for the

buckling pressure of spheroidal shells stiffened by reinforcements along the equatorial

or longitudinal directions, which was also founded on the shallow-shell theory [58].

As a special case, the local buckling pressure of an orthotropic sphere around its

equator is given by setting β0 = 0 above:

pc, sph = −4
√
D′Y ′

R2
, (3.43)
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The buckling of orthotropic spheres was investigated computationally and

experimentally in Ref. 53. In that work, it was found that upon increasing the

external pressure on an orthotropic sphere with material anisotropy aligned to the

polar and azimuthal directions, buckling first occurred in the vicinity of the equator

when λ ≥ 1 (i.e., when the stiffness E1 along the polar direction is greater than

the stiffness E2 along the azimuthal direction). Consequently, our expression for the

local buckling pressure at the equator provides a prediction for the global buckling

pressure when λ > 1.

We compared our theoretical result against simulation results for the buckling

load of orthotropic spherical shells with λ > 1, which were generated following the

computational approach reported in Ref. 53 (see Appendix H.1 for details). To

isolate the explicit dependence of the buckling pressure on the anisotropy parameter,

theory and simulation values were rescaled by the classical buckling pressure of an

isotropic sphere with the same radius and elastic parameters {E1, υ12}:

pMsc := − 2E1√
3 (1− υ2

12)

(
t

R

)2

. (3.44)

Using this pressure scale, the rescaled prediction for the buckling pressure of spheres

with λ > 1 is

ηMc, sph :=
pc, sph
pMsc

=
1√
0.91λ

√
1− 0.09

λ
, (3.45)

which is plotted as a solid line in Fig. 3.5. We found that upon subtracting a

constant offset of 0.0738, the theoretical result successfully captures the dependence

of the buckling pressure on the anisotropy parameter. The constant offset is well

within the expected deviation between theory and simulations due to factors such

as imperfection sensitivity. Ref. 53 also reported buckling pressures for orthotropic
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FIGURE 3.5. The scaled global buckling pressure of orthotropic spheres as a function
of the degree of material anisotropy. The spheres considered here have a larger
Young’s modulus along the polar direction, i.e., λ ≥ 1 (E1 ≥ E2). Symbols denote
finite element simulation data (see Appendix H.1 for details). The solid curve
corresponds to the analytical result Eq. (3.45) subtracting a constant offset of 0.0738.
The inset shows the buckling mode along the equator.

spherical shells with λ < 1, for which buckling was observed to first occur near the

two poles where the type of orthotropy is not rectilinear but polar. The rescaling

transformation does not apply to this form of anisotropy, so we cannot predict the

global buckling pressure in this parameter region using our approach.

Internal Buckling Pressure. In our previous work [4], we demonstrated qualitatively

that because of the sign switch of the prestress component σ22
0 (= 1

2
pR2 (1 + β0)) at

β0 = −1, it is possible for a highly oblate spheroidal shell with β0 < −1 to buckle

under an internal pressure (p, ηs,y > 0) due to compressive stresses along its equator.

Using Eq. (3.33), we are able to identify that pressure exactly. For β0 < −1 (α < 0)

and ηs,y > 0, the function k(ηs,y(λ), β0) vanishes when 1 + αηs,y = 0, or equivalently,

ηs,y = ηintc := − 1

α
=

1− β0

|1 + β0|
> 0. (3.46, a)
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(This is roughly because lim
x→+∞

∣∣√xF (ϑ |x)
∣∣ = +∞.) Restoring the physical units

gives

pintc =
4
√
D′Y ′

R2
2 − 2R1R2

(3.46, b)

(cf. Eqs. (3.42)). Equations (3.46) are consistent with the results by Tovstik and

Smirnov on isotropic spheroids [72], and yet again show that the orthotropic shell

response is dictated by replacing the isotropic elastic constants with their geometric-

mean counterparts D′ and Y ′.

3.4 Discussions

We established that under a particular coordinate transformation (Eq. (3.7)),

which we termed the rescaling transformation, an orthotropic shallow shell can be

treated locally as an isotropic one of a different geometry. The main idea behind the

rescaling transformation–hiding anisotropy by rescaling the coordinate system used–

is also seen in other contexts, e.g., the anisotropic XY -model [73]. The rescaling

transformation enabled us to obtain analytically local mechanical properties of

orthotropic spheroidal and cylindrical shells, such as their buckling load (Eqs. (3.42),

(3.19) and (3.22)) and indentation stiffness (Eqs. (3.33) and (3.30)), directly from

using the corresponding isotropic results. Besides its mathematical convenience,

the transformation also helped to quantify the separate effects of geometry and

material anisotropy on these local mechanical properties. We demonstrated that

when the principal directions of curvature and material anisotropy are aligned, the

two effects are decoupled. In light of this, an orthotropic shell can have the same

local mechanical properties as an isotropic one as long as they have the same local

geometry. This rationalizes why it is valid to use GMI (geometric-mean isotropic)

materials as an approximation of real orthotropic materials in certain cases [65].
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Effects of geometry on local mechanical properties were studied in detail in our

previous work [4]. Effects of material anisotropy differ depending on whether or

not the deformation considered is localized. In the case of a localized deformation,

the anisotropic elastic constants combine in the form of geometrical mean; the

resulting combinations serve the role of effective isotropic elastic constants. If the

deformation is not localized, like the case of indenting a cylinder at zero pressure,

besides the aforementioned effect, local mechanical properties can also depend on

other dimensionless combinations of the anisotropic elastic constants, such as their

ratio (see Eq. (3.30)). In such cases, it would be wrong to use GMI materials to

approximate real orthotropic materials.

We assumed throughout this paper that the orthotropic in-plane shear modulus

(denoted by G12) is given by the Huber form (GH given by Eq. (3.4)). Our work

provides theoretical insight on why this type of orthotropic materials can have

isotropic behaviors, e.g., why they do not exhibit tristability [55]. We envision

that our rescaling transformation can still be useful in studies of shells made of

general orthotropic materials: In these cases, G12 is in general a free parameter,

and a torsion-like term with coupling constant G12 −GH needs to be added into the

governing equations.

Our work also points to a couple of directions for future investigations. First, for

spheroidal shells, the rescaling transformation can actually only be applied at their

equator where the axes of curvature and material anisotropy perfectly coincide. At

other locations, there will be some angle between the two sets of axes, and we hence

expect that the effects of geometry and material anisotropy can couple together at

these locations, making a shell locally stronger. We image that studying this more

general case can be useful for structural design. Furthermore, we note that at the
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poles, material orthotropy becomes curvilinear. The rescaling transformation does

not apply in this case because of the complicated form that the biharmonic operator

takes in polar coordinates [49]. It remains an open question what the buckling

pressure and indentation stiffness of shells of curvilinear orthotropy are. Knowing

these can shed some light on morphogenesis [53], such as the reason why an apple

develops a cusp [74].
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CHAPTER IV

I now take into account the extensibility. I follow the presentation on Wikipedia.

The total deformation energy is

Utot =

∫ L0

0

dx

(
1

2
N11 ε11 +

1

2
M11 χ11 − qw

)
, (4.1)

where L0 = ℓ1, and χ11 is the bending strain.

Utot{u(x, t), w(x, t)} =
1

2

∫ L0

0

dx



Y

[
∂u(x, t)

∂x
+

1

2

(
∂w(x, t)

∂x

)2
]2

+D

(
∂2w(x, t)

∂x2

)2





(4.2)

W∥{w(x, t)} = −
∫ L0

0

dx q(x, t)w(x, t) (4.3)

T{u(x, t), w(x, t)} =
1

2
ρA

∫ L0

0

dx

[(
∂u(x, t)

∂t

)2

+

(
∂w(x, t)

∂t

)2
]

(4.4)

δ
(
T − U −W∥

)
= 0 (4.5)

1At the present, the rod considered is clamped at both ends and only subject to a transverse
load, q(x, t). As a result, its contour length L0 equals its original length ℓ.
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ρA
∂2u

∂t2
= Fu = −δEtot

δu
(4.6)

ρA
∂2w

∂t2
= Fw = −δEtot

δw
(4.7)





ρA
∂2u

∂t2
= Y

∂2u

∂x2 + Y
∂w

∂x

∂2w

∂x2

ρA
∂2w

∂t2
= −D

∂4w

∂x4 + Y

(
∂u

∂x

∂2w

∂x2 +
∂2u

∂x2

∂w

∂x

)
+

3

2
Y

(
∂w

∂x

)2
∂2w

∂x2 + q(x, t)

(4.8)

δ

{
1

2

Y

ℓ

(
1

2

∫ L0

0

dxh′2(x)

)2
}

=

∫ L0

0

dx

[
−1

2

Y

ℓ

(∫ L0

0

dy h′2(y)

)
h′′(x)

]
δh(x)

(4.9)

I have noticed the following curious fact. If I ignore dynamics for a moment, I will

have the following set of equilibrium equations:





u′′ = −w′w′′,

Dw(IV) −
1

2
Y (w′3 + 2u′w′)

′
= q(x).

(4.10)

The first equation can be solved to give

u′ = −1

2
w′2. (4.11)
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Substituting this relation into the second equation gives

Dw(IV) = q(x). (4.12)

This means that I can safely disregard the nonlinearity that arises from the coupling

between the two fields u(x) and w(x). In field-theory language, the following field

redefinition can be performed:

u(x) := u(x)− 1

2

∫ x

0

dy w′2(y), (4.13)

so that the new field u(x) and w(x) are decoupled. This justifies the fact that Bedi

and Mao ignored this nonlinearity in their work. However, if dynamics is considered,

the nonlinearity cannot be neglected anymore.

I now add a horizontal load F (t) at the ends of the beam. I am going to use

the stretching energy functional in the presentation by Bedi and Mao. After taking

functional derivatives, I get the following dynamic equation for w(x, t):

ρA
∂2w

∂t2
= −D

∂4w

∂x4 + Y

(
∂u

∂x

∂2w

∂x2 +
∂2u

∂x2

∂w

∂x

)
+

3

2
(Y − F (t))

(
∂w

∂x

)2
∂2w

∂x2 +

+ F (t)
∂2w

∂x2 +
1

2

Y

ℓ

[∫ L0

0

dy

(
∂w

∂y

)2
]
∂2w

∂x2 + q(x, t).

(4.14)

Note that after F (t) is introduced, the beam’s contour length does not equal its rest

length, i.e., L0 ̸= ℓ.

The case ∂2u
∂t2

≈ 0.. According to Ref. ? , the in-plane inertia term ∂2u
∂t2

can be

neglected under certain circumstances. If this is indeed the case in our problem, I
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will have again the relation

∂2u

∂x2 = −∂w

∂x

∂2w

∂x2 . (4.15)

It then follows that

∂u

∂x
+

1

2

(
∂w

∂x

)2

= f(t), (4.16)

where f(t) is some function of t, which can be fixed by boundary conditions. In

particular, since f(t) does not depend on position at all, I can get f(t) by evaluating

the left-hand side of Eq. (4.16) at one end of the rod, say x = 0, i.e.,

f(t) =

[
∂u

∂x
+

1

2

(
∂w

∂x

)2
]

x=0

. (4.17)

In our problem, both ends of the rod are clamped; therefore, f(t) ≡ 0 for all t.

After some further simplification, I obtain

ρA
∂2w

∂t2
= −D

∂4w

∂x4 − 3

2
F (t)

(
∂w

∂x

)2
∂2w

∂x2 +

+ F (t)
∂2w

∂x2 +
1

2

Y

ℓ

[∫ L0

0

dy

(
∂w

∂y

)2
]
∂2w

∂x2 + q(x, t).

(4.18)

Prof. P.’s idea.. The main idea of Prof. P. is to study the system in two steps.

In the first step, the rod is only subject to the dynamic transverse load q(x, t). The

resulting deformed rod will then be compressed horizontally by the static applied

force F at its right end, which is the second step. This motivates the following

ansatz:

w(x, t) = w⊥(x, t) + w∥(x), (4.19)
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where w⊥ satisfies the equation

ρA
∂2w⊥
∂t2

= −D
∂4w⊥
∂x4 +

1

2

Y

ℓ

[∫ L0

0

dy

(
∂w⊥
∂y

)2
]
∂2w⊥
∂x2 + q(x, t), (4.20)

and w∥ the linear ODE

D
d4w∥

dx4 + F

[
1− 3

2

〈(
∂w⊥
∂x

)2
〉

t

− 1

2

Y

Fℓ

〈∫ L0

0

dy

(
∂w⊥
∂y

)2
〉

t

]
d2w∥

dx2 = 0. (4.21)

I felt later that it was pointless to impose a time dependence on w⊥(x, t).

Therefore, I will for now focus on the case of static loads. Accordingly, the governing

equations become

−D
d4w⊥
dx4 +

1

2

Y

L0

[∫ L0

0

dy

(
dw⊥
dy

)2
]
d2w⊥
dx2 + q(x) = 0 (4.22)

and

D
d4w∥

dx4 + F

[
1− 3

2

(
d2w⊥
dx2

)2

− 1

2

Y

FL0

∫ L0

0

dy

(
dw⊥
dy

)2
]
d2w∥

dx2 = 0. (4.23)

To solve Eq. (4.22), I first write w⊥ as a Fourier sine series:

w⊥(x) =
∞∑

n=1

w⊥
n sin

(
nπx

L0

)
, where w⊥

n :=
2

L0

∫ L0

0

dxw⊥(x) sin

(
nπx

L0

)
.

(4.24)

To save writing, I let kn ≡ nπ
L0
. In terms of the wavenumbers kn, Eq. (4.22) reads

∞∑

n=1

[
−Dk4

nw
⊥
n − Y

4
k2
nw

⊥
n

∞∑

m=0

(
kmw

⊥
m

)2
+ qn

]
sin

(
nπx

L0

)
= 0. (4.25)
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Fortunately, particular solutions of Eq. (4.22) are straightforward to obtain. Let

q(x) = Q sin(knx) be the strength of a simple external sinusoidal load. A particular

solution takes the form w⊥(x) = w0
⊥ sin(knx). As a result,

−Dk4
nw

0
⊥ − Y

4
k4
n(w

0
⊥)

3 +Q = 0. (4.26)

Solving for w0
⊥,

w0
⊥ ≈ 1

π4

QL4
0

D

1

n4
+

5

8

Y

D

(
1

π4

QL4
0

D

1

n4

)3

. (4.27)

The dynamic case is in fact much more complicated than I thought. In this case,

let q(x, t) = Q sin(knx)f(t), where f is some function of t. Substituting the separable

ansatz w⊥(x, t) = X(x)T (t)
!
= w0

⊥ sin(knx)T (t) into Eq. (4.20) gives

ρA
1

T

d2T

dt2
= −D

1

X

d4X

dx4 +
1

2

Y

L0

T 2

[∫ L0

0

dy

(
dX

dy

)2
]

1

X

d2X

dx2 +
q

XT
. (4.28)

This equation is in general not separable. However, it is separable when the beam

is driven by loads that have a single spatial Fourier mode, i.e., q ∝ sin(knx), so that

X, d
2X
dx2 and d4X

dx4 ∝ q. In this special case, the above equation reduces to

ρA
d2T

dt2
+Dk4

nT +
Y

4
k4
n(w

0
⊥)

2T 3 =
Q

w0
⊥
f. (4.29)

To nondimensionalize this equation, I write t = τnt
′ with the chosen time scale

τn :=
√

ρA
Dk4n

. The resulting nondimensionalized equation is

d2T

dt′2
+ T + β2T 3 =

2αn

β
f, (4.30)
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where I let β :=
w0

⊥
ℓ
. Given a desired waveform T (t), I can easily obtain from the

above equation the required dynamic load f(t):

f =
β

2αn

(
d2T

dt′2
+ T + β2T 3

)
. (4.31)

I can now substitute the separable ansatz into Eq. (4.21) and get the longitudinal

equation:

D
d4w∥

dx4 + F

[
1− 1

4

Y

F
k2
n(w

0
⊥)

2
〈
T 2
〉
t
− 3

2
k2
n(w

0
⊥)

2
〈
T 2
〉
t
cos2(knx)

]
d2w∥

dx2 = 0. (4.32)

In the static case, ⟨T 2⟩t = 1, while in the dynamic case, I am free to choose any

waveform T (t), so that ⟨T 2⟩t can be any arbitrary constant. Writing x′
n = knx, I can

nondimensionalize the above equation:

d4w∥

dx′
n
4 +

{[
φn −

(
1 +

3

4
φnκ

2
n

)
β2
〈
T 2
〉
t

]
− 2

(
3

8
φnκ

2
nβ

2
〈
T 2
〉
t

)
cos(2x′

n)

}
d2w∥

dx′
n
2 = 0,

(4.33)

where I have defined the scaled force φn := F
Fsc

:= F
Dk2n

and the scaled wavenumber

κn := knℓ. The nondimensionalized equation takes the form of Mathieu’s equation,

d2y

dz2
+ (a− 2q cos 2z) y = 0, (4.34)

with 



y ≡ d2w∥

dx′
n
2

a ≡ φn −
(
1 +

3

4
φnκ

2
n

)
β2
〈
T 2
〉
t
,

q ≡ 3

8
φnκ

2
nβ

2
〈
T 2
〉
t
.

(4.35)
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Sketch work. Let x ≡ w0
⊥.

x3 +
4D

Y
x− 4D

Y

Q

Dk4
n

= 0 (4.36)

Let x ≡ 2
√

D
Y
x′.

x′3 + x′ − 1

2D

√
Y

D

Q

k4
n

= 0 (4.37)

The length scale ℓ := 2
√

D
Y

is related to the normalized second central moment:

ℓ = 2

√
1

A

∫

D

dAz2. (4.38)

In the case of a circular cross-section with radius h
2
, ℓ = h

2
.

There is also a load-strength scale:

Qsc := π4Dℓ

L4
0

. (4.39)

Let Q′ := Q
Qsc

.

x′3 + x′ − Q′

n4
= 0 (4.40)

I assume that n ≫ 1, such that αn :=
1
2
Q′

n4
≪ 1.

x′3 = 3

(
−1

3

)
x′ + 2αn (4.41)

x′ =

(
αn +

√
α2
n +

1

27

) 1
3

+

(
αn −

√
α2
n +

1

27

) 1
3

(4.42)
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x′ ≈
(
αn +

1

3
√
3

) 1
3

+

(
αn −

1

3
√
3

) 1
3

=

√
3

3

[(
1 + 3

√
3αn

) 1
3 −

(
1− 3

√
3αn

) 1
3

]

≈ 2αn +
5

4
(2αn)

3

(4.43)
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CHAPTER V

CONCLUSION

In this final chapter, we are going to summarize the key results obtained in

the previous three chapters and point out some research directions for future

investigations.

5.1 Summary

5.1.1 Indentation Stiffness of Isotropic Spheroidal and Cylindrical

Shells

We solved the nonlinear shallow-shell equations using Fourier transform. The

indentation stiffness was characterized by a Fourier integral termed the stiffness

integral. Instead of exactly carrying out the stiffness integral, which was done in ??,

we here evaluated it in different limits.

5.1.1.1 General Spheroids (−1 ≤ β < 1). For a general spheroidal shell, the

stiffness integral was found to diverge at a particular external pressure, which is the

spheroid’s local buckling pressure (denoted by pc). Near and below the buckling

pressure (|p| < |pc|), the stiffness integral diverges logarithmically for non-spheres

(β ̸= 0), while in the spherical limit, this becomes a power-law divergence.

At low internal pressures, the actual stiffness (the inverse of the stiffness integral)

was found to be proportional to
√
K, where K is the spheroid’s local Gaussian

curvature. Since K = 1−β
R2

y
, a spheroidal shell with a smaller β is locally stiffer (with

Ry fixed). However, this does not hold true in the high-pressure limit. We found

that the relevant geometric quantity in this case is the distensile curvature radius
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R := 1
p

√
det{σ} = Ry

√
1 + β. This implies exactly the opposite of the low-pressure

case: it is now a shell with a larger β that is locally stiffer. This contrast in the two

limits predicts a phenomenon called the stiffness switching that between two shells,

the shell which is locally softer in the low-pressure limit will become the stiffer one

when getting highly pressurized.

5.1.1.2 Long Cylinders (β = 1). While the stiffness integral diverges when

p ≤ 0, this does not mean that the buckling pressure of a long cylindrical shell is

zero. In fact, it is known that its buckling pressure is given by pc = −3D
R3 [7], which

is identical to that of a ring with the same radius. The problem here is that the way

we solved the shallow-shell equations—using the double Fourier transform—failed to

capture the long-wavelength isometric deformation of the cylindrical shell. We fixed

this issue in ?? using the approach by Yuan [16].

For finite internal pressures, deformations of the cylinder become localized and

hence non-isometric. We derived a pressure range for which using the double Fourier

transform is appropriate and further showed that the stiffness of the cylinder scales

as
√
p when the internal pressure within that range is low. At high pressures, the

result in 5.1.1.1 applies; in fact, according to the stiffness switching, the cylinder

will be stiffer than any spheroidal shell after certain pressure.

5.1.2 The Rescaling Transformation and Indentation Stiffness of

Orthotropic Shells

We found that by rescaling the coordinates, the generalized Hooke’s law

for an orthotropic elastic material takes the isotropic form. We termed the

corresponding coordinate transformation the rescaling transformation. The rescaling

92



transformation reveals the fact that even though having less symmetry, an

orthotropic material can behave as an isotropic material if we choose to measure

physical quantities along the two orthotropic directions in a different way1. The

principle underlying the rescaling transformation—mapping an anisotropic system

to an isotropic one by rescaling the coordinate system used—has also been seen in

other contexts, e.g., the anisotropic XY -model [73].

We derived the indentation stiffness and buckling pressure of rectilinearly

orthotropic spheroidal and cylindrical shells by using the rescaling transformation

on the corresponding known isotropic results. We found that in the case where the

deformation considered is localized (so that the double Fourier transform can be

used), an orthotropic shell behaves exactly as its isotropic counterpart, and so the

discussions in 5.1.1 on indentation stiffness in different limits still apply. The only

effect of material orthotropy in this case is that the orthotropic elastic constants

combine in the form of geometric mean to serve as the effective isotropic constants.

On the other hand, in the case of long-wavelength deformations, such as indentation

response of long cylinders at low pressures, besides the aforementioned effect, local

mechanical properties of an orthotropic shell can also depend on some dimensionless

combination of the orthotropic elastic constants, e.g., their ratio.

What is more, as previously mentioned, we exactly evaluated the stiffness integral.

The exact expression makes it easy to obtain the local buckling pressure of spheroidal

shells and clearly shows that shells with β < −1 can buckle under an internal

pressure.

1Physically, rescaling the coordinates is like using a different set of units for measurements.
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5.1.3 Controlled Buckling of Nonlinear Euler-Bernoulli Beams

Finally, we switched gear to buckling of nonlinear Euler-Bernoulli (EB) beams.

The sources of nonlinearity in our system include beam extensibility and large

deformations. The EB beams that we considered are clamped at the two ends and

subjected to both a transverse and a longitudinal load. We showed that under the

prescribed boundary and loading conditions, the equilibrium configurations of the

EB beams are given by Mathieu functions.

5.2 Research Outlook

5.2.1 Isotropic Shells

5.2.1.1 General Ellipsoidal Shells. A low-hanging fruit is studying the

indentation stiffness of a general triaxial ellipsoidal shell made of an isotropic

material. Using the known prestresses derived in Ref. 31, one can obtain a stiffness

integral that is similar to the one in Eq. (3.32). From the integral one can compute

the indentation stiffness and further obtain the shell’s local buckling pressure.

5.2.1.2 Relevant Geometric Quantity for Large Deformations. Recall

that we have established that at low pressures, it is a shell’s local Gaussian curvature

that governs the indentation stiffness. However, this result assumes a linear relation

between force and displacement, which is valid only when the displacement due to

an applied force is much smaller than the shell thickness. Therefore, it remains an

open question whether Gaussian curvature is still the relevant geometric quantity in

the case of large deformations. One promising way to solve the problem is, again,

to rescale the coordinates, so that the Vlasov operators in Eqs. (2.16) become the
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Laplacian operator in the rescaled coordinate system, and then apply the argument

in Ref. 14 for spheres to spheroidal shells.

5.2.2 Orthotropic Shells

5.2.2.1 Curvilinear Orthotropy. The rescaling transformation found previously

only holds in the case of rectilinear orthotropy and hence does not apply to

curvilinearly orthotropic shells. Nevertheless, we were still able to obtain their

indentation stiffness in the absence of pressure by solving the linearized axisymmetric

shallow-shell equations.

The situation becomes complicated when pressure is introduced. As Reissner has

demonstrated [71], stress within the pressurized shells has the power-law behavior

r−1+
√

Eθ/Er . That is, the stress at the pole (r = 0) will either vanish (Eθ > Er)

or diverge (Er > Eθ). This behavior cannot be captured by linear theory. The

breakdown of linear theory makes it challenging to derive the indentation stiffness

(in the presence of pressure) and buckling pressure of these shells. At present, only

numerical solutions are known [53].

Steele and Fartung [70] developed a deep-shell theory to study these shells. They

were able to get solutions which describe the deformation of these shells under a

uniform pressure. Their solutions involve special functions, which I would like to

learn more about. I plan to use their approach as a starting point to study this

problem.

5.2.2.2 General Orthotropic Shear Modulus.
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5.2.3 Beams

5.2.3.1 Classical-Quantum Mapping.

5.2.3.2 Mathieu-Duffing Equation.
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APPENDIX A

A.1 Geometry of a shell’s middle surface

Let M denote the middle surface of a shell. We choose to locally parametrize

M using coordinates corresponding to lines of principal curvature (denoted by xα).

Since these lines are orthogonal, their tangent vectors at any arbitrary point P ∈ M

are also orthogonal: if α ̸= β,

〈
∂

∂xα

∣∣∣∣
P

,
∂

∂xβ

∣∣∣∣
P

〉
= 0. (A.1)

This means that the induced metric on M takes the diagonal form in this coordinate

system:

a = aαβ dx
α ⊗ dxβ = a11 dx

1 ⊗ dx1 + a22 dx
2 ⊗ dx2. (A.2)

Defining the one-forms ϕ̃α :=
√
aαα dx

α (no Einstein summation convention), we can

rewrite the metric as

a = ϕ̃1 ⊗ ϕ̃1 + ϕ̃2 ⊗ ϕ̃2 = δαβ ϕ̃
α ⊗ ϕ̃β, (A.3)

where δαβ is the Kronecker delta symbol. The second fundamental form of M also

takes the diagonal form in the coordinates (xα) and can be written as

b = bαβ dx
α ⊗ dxβ = b11 dx

1 ⊗ dx1 + b22 dx
2 ⊗ dx2

=
b11
a11

ϕ̃1 ⊗ ϕ̃1 +
b22
a22

ϕ̃2 ⊗ ϕ̃2

≡ κ1 ϕ̃
1 ⊗ ϕ̃1 + κ2 ϕ̃

2 ⊗ ϕ̃2,

(A.4)
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where κα denotes the principal curvatures of M.

A.2 Geometry of the entire shell

The outward unit normal vectors n̂ of the middle surface M are given by

n̂ =

∂

∂x1
× ∂

∂x2∥∥∥∥
∂

∂x1
× ∂

∂x2

∥∥∥∥
. (A.5)

Let S denote the three-dimensional solid shell and h the shell thickness. We can

use the orthogonal coordinates (xi) ≡ (xα, z) to parametrize S; the new coordinate

z ∈
[
−h

2
, h
2

]
measures the distance along the n̂-direction away from the shell middle

surface, at which z = 0.

The metric on S still takes the diagonal form in this coordinate system:

g = gij dx
i ⊗ dxj = g11 dx

1 ⊗ dx1 + g22 dx
2 ⊗ dx2 + g33 dx

3 ⊗ dx3

= a11(1 + zκ1)
2 dx1 ⊗ dx1 + a22(1 + zκ2)

2 dx2 ⊗ dx2 + dx3 ⊗ dx3.

(A.6)

Notice that g(x3 = 0) = a. The rest of the section is devoted to show Eq. (A.6).

A.2.1 Proving Eq. (A.6).

A.2.1.1 A Pedagogical Approach. We first use a pedagogical approach. Let

X(xα) denote a parametrization of the shell middle surface M. Then S can be

parametrized as

Y(xi) = X(xα) + z n̂(xα). (A.7)
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We can compute the components of the metric g using

gij = g

(
∂

∂xi
,

∂

∂xj

)
≡ g

(
∂Y

∂xi
,
∂Y

∂xj

)
=

〈
∂Y

∂xi
,
∂Y

∂xj

〉
. (A.8)

We have

g33 =

〈
∂Y

∂z
,
∂Y

∂z

〉
= ∥n̂∥2 = 1 (A.9)

and

gαα =

〈
∂Y

∂xα
,
∂Y

∂xα

〉
=

〈
∂X

∂xα
+ z

∂ n̂

∂xα
,
∂X

∂xα
+ z

∂ n̂

∂xα

〉

=

∥∥∥∥
∂X

∂xα

∥∥∥∥
2

+ z2
∥∥∥∥
∂ n̂

∂xα

∥∥∥∥
2

+ 2z

〈
∂X

∂xα
,
∂ n̂

∂xα

〉 (A.10)

(no Einstein summation convention). The first term in Eq. (A.10) is just aαα. To

understand what the other two terms mean, let us first review the concept of shape

operator.

Shape operator. The shape operator S at a point P ∈ M is a linear map on the

tangent space at P , SP : TPM → TPM, which is given by

SP (V) = − ∇V n̂|P ≡ − V α ∂ n̂

∂xα

∣∣∣∣
P

. (A.11)

The second fundamental form b is defined in terms of S as follows:

b(·, ·) := ⟨·,S (·)⟩ . (A.12)
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Since S maps a vector to a vector in the same tangent space, it is a
(
1
1

)
-tensor field:

S = bα
β dxα ⊗ ∂

∂xβ
. (A.13)

In component form, Eq. (A.12) reads

bαβ = b

(
∂

∂xα
,

∂

∂xβ

)
=

〈
∂

∂xα
,S

(
∂

∂xβ

)〉

=

〈
∂

∂xα
, bβ

γ ∂

∂xγ

〉

= bβ
γ aαγ.

(A.14)

Note that in the coordinates (xα), all of the three matrices— (aαβ) , (bαβ) and
(
bα

β
)
—

are diagonal; what is more, it is known that in these coordinates, b1
1 = κ1, and

b2
2 = κ2.

With these new definitions we can take a closer look at Eq. (A.10). We first write

∂ n̂

∂xα
≡ −S

(
∂

∂xα

)
(A.15)

using the definition Eq. (A.11). Thanks to Eq. (A.12), the meaning of the third term

in Eq. (A.10) now becomes immediately recognizable: it is just −2z bαα = −2zκα aαα.

To understand the meaning of the second term, we can rewrite it using the shape

operator as follows:

z2
〈

S

(
∂

∂xα

)
,S

(
∂

∂xα

)〉
= z2

〈
bα

β ∂

∂xβ
, bα

γ ∂

∂xγ

〉

= z2 bα
β bα

γ aβγ = z2κ2
α aαα.

(A.16)
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After some rearrangements, we arrive at the desired result1.

A.2.1.2 An Intuitive Argument. Let us consider a surface, Mz, which is

parallel to M with a distance z away. To get gαα, we can just compute the length

of an infinitesimal arc on Mz in the xα-direction: the arclength dℓz is given by

dℓz =

√∥∥∥∥
∂Y

∂xα
dxα

∥∥∥∥
2

=
√
gαα dx

α. (A.17)

It is related to the length of the corresponding arc on M, dℓ, in the following way:

dℓz
dℓ

=
Rα + z

Rα

:=

1

κα

+ z

1

κα

= 1 + zκα, (A.18)

where Rα := 1
κα

denotes the curvature radius. It follows that

dℓz = (1 + zκα) dℓ =
√
aαα(1 + zκα) dx

α, (A.19)

which gives the desired result.

1There is a sign difference which results from our choice for n̂.
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APPENDIX B

CATALOGUE OF DIMENSIONFUL ANALYTICAL RESULTS FOR

INDENTATION STIFFNESS IN DIFFERENT LIMITS

This appendix contains analytical expressions written in terms of dimensionful

parameters for the indentation stiffness of isotropic spheroidal and cylindrical shells

in different limits. These expressions also hold for orthotropic shells in which case

the effective elastic constants—Eeff and υeff (see 3.2)—should be used in place of the

isotropic Young’s modulus E and Poisson’s ratio υ.

First, the zero-pressure stiffness of a doubly-curved shell can be written in terms

of the shell material’s Young’s modulus E, Poisson’s ratio υ and the shell thickness

t as

k0 = 8

√
κY

RxRy

=
4Et2√
3(1− υ2)

1√
RxRy

. (B.1)

When computing the indentation stiffness of a pressurized spheroidal shell, we believe

that it is generally easier to first scale the pressure and then use the resulting

nondimensionalized pressure to perform the calculation. Therefore, the following

expressions are given in terms of the scaled pressure

ηs,y =
pR2

y

4
√
κY

=

√
3(1− υ2)

2

(
Ry

t

)2
p

E
(B.2)

and the asphericity of the given shell β = 1 − Ry

Rx
, which is another combination of

parameters that commonly shows up in indentation expressions.

The high-pressure stiffness of spheroidal shells with −1 < β ≤ 1 can be recast as

kasy ≈ πpRy

√
1 + β

[
ln

(
4ηs,y

1 + β

1 +
√

1− β2

)]−1

. (B.3)
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Setting β
!
= 1 in Eq. (B.3), we obtain the dimensionful asymptotic stiffness of a long

cylindrical shell:

kasy,cyl ≈
√
2πpRy

ln 8ηs,y
. (B.4)

For the same cylindrical shell, when the internal pressure is relatively low, its

indentation stiffness becomes

kcyl ≈ 2π2pRy

(
11.6

√
ηs,y − 2.66η

3
2
s,y + 1.83η

5
2
s,y − 0.998η

7
2
s,y

)−1

. (B.5)

Finally, for spheroidal shells with |β| < 1, their stiffness near the critical external

pressure is dictated by

k ≈ π |p|Ry

√∣∣∣∣
β

ηs,y

∣∣∣∣
1

√
1− ϵ sinh−1

(√
2

4
π2

1
|β| + 1 + f(β)

1√
ϵ

) , (p, ηs,y < 0) (B.6)

where

ϵ =





1− 1 + β

1− β
|ηs,y| , for 0 ≤ β < 1,

1− |ηs,y| , for − 1 < β < 0,

(B.7)

and

f(β) =





(
1− 4

π2

)
β, for 0 ≤ β < 1,

0, for − 1 < β < 0.

(B.8)
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APPENDIX C

UNRESCALED LINEAR ORTHOTROPIC SHALLOW-SHELL EQUATIONS

This appendix contains expressions for linearized (rectilinearly) orthotropic

shallow-shell equations 1 written in terms of unrescaled coordinates without using

tensor notation. The dimensionless version of the equations has been derived in

Ref. 75; we are here going to restore physical units.

For shells made of an orthotropic material, the compatibility equation takes the

following form:

√
λ
∂4Φ

∂x4 +2Eeff

(
1

2G12

− υ12
E2

)
∂4Φ

∂x2 ∂y2
+

1√
λ

∂4Φ

∂y4
= Y ′

(
1

R2

∂2w

∂x2 +
1

R1

∂2w

∂y2

)
, (C.1)

and the EOE is given by

√
λ
∂4w

∂x4 + 2
1

D′
t3

12

(
2G12 +

E1υ12
1− υ12υ21

)
∂4w

∂x2 ∂y2
+

1√
λ

∂4w

∂y4
+

+
1

D′

(
1

R2

∂2Φ

∂x2 +
1

R1

∂2Φ

∂y2

)
=

1

D′

(
σ11
0 t

∂2w

∂x2 + 2σ12
0 t

∂2w

∂x ∂y
+ σ22

0 t
∂2w

∂y2

)
.

(C.2)

Let G12
!
= Eeff

2(1+υeff)
, i.e., assuming that the Huber form applies. We notice the

following simplifications:

1

2G12

− υ12
E2

=
1 + υeff
Eeff

− υeff
Eeff

=
1

Eeff

(C.3)

1The fact that the original nonlinear shallow-shell equations can be linearized implies that
rectilinearly orthotropic shells can deform uniformly under a uniform pressure, at least in an
approximate sense.
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and

t3

12

(
2G12 +

E1υ12
1− υ12υ21

)
=

t3

12

(
Eeff

1 + υeff
+

Eeffυeff
1− υ2

eff

)
=

Eefft
3

12 (1− υ2
eff)

≡ D′. (C.4)

The two shallow-shell equations then reduce to

(
4
√
λ
∂2

∂x2 +
1
4
√
λ

∂2

∂y2

)2

Φ =: £Φ = Y ′ ∆V w (C.5, a)

and

D′ £w +∆V Φ = σ11
0 t

∂2w

∂x2 + 2σ12
0 t

∂2w

∂x ∂y
+ σ22

0 t
∂2w

∂y2
, (C.5, b)

where ∆V ≡ 1
R2

∂2

∂x2 + 1
R1

∂2

∂y2
denotes the Vlasov operator. Combining the two

equations, we obtain

D′£2w + Y ′ ∆V
2w = £

(
σ11
0 t

∂2w

∂x2 + 2σ12
0 t

∂2w

∂x ∂y
+ σ22

0 t
∂2w

∂y2

)
. (C.6)
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APPENDIX D

MECHANICAL PROPERTIES AT THE POLES OF AN ORTHOTROPIC

SPHEROID.

In this appendix, we will derive the indentation stiffness at the poles of an

orthotropic spheroid in the absence of pressure. Recall that the type of orthotropy is

curvilinear at the poles (see Fig. ??). The result is obtained in two ways, first by a

qualitative energy-balance argument which is then supported by analytically solving

the governing linearized EOEs. We finish the appendix with a short discussion about

what will happen if the spheroid is pressurized.

D.1 Zero-Pressure Indentation Stiffness.

D.1.1 The Energy-Balance Argument.

Landau and Lifshitz first used this approach to obtain the indentation stiffness

and buckling pressure of an isotropic spherical shell [5]. We here modify their

approach to include polar material orthotropy.
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FIGURE D.1. Indenting a spheroidal shell near one of its poles. The part of the
shell in the vicinity of the pole is locally spherical with radius denoted by R. A point
load, F, is applied right at the pole. The dimension of the resulting deformed region
is roughly d, and the vertical deflection along F is denoted by ζ.

Figure D.1 depicts that a point load F is applied at one of a spheroid’s poles, the

center of a locally spherical region with radius R. The area of the resulting deformed

region is of the order d2 (∼ d2). The deflection ζ varies significantly over a distance of

d, which implies that the bending energy is∼ Ert
3
(

ζ
d2

)2
d2, where Er denotes Young’s

modulus along the meridional direction (the red curves in Fig. ??). The reason why

Er was used to estimate the bending energy is that from the cross-sectional view,

Fig. D.1, shell bending mainly occurs in the meridional direction, while stretching

happens in the zonal direction (the blue curves in Fig. ??).

Strain does not depend on d and is ∼ ζ
R
. The stretching energy is thus ∼

Eθt
(
ζ
R

)2
d2, and the total elastic energy is roughly

Utot ∼
Ert

3ζ2

d2
+

Eθtζ
2

R2
d2. (D.1)
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The global minimum of Utot can be rapidly obtained by recalling the AM-GM

inequality:

Umin ∼ 2
√
ErEθt

2ζ2

R
= 2

√(
Ert3ζ2

d2

)(
Eθtζ2

R2
d2
)

≤ Ert
3ζ2

d2
+

Eθtζ
2

R2
d2 ∼ Utot.

(D.2)

Varying Umin with respect to ζ and equating the result to F δζ, the variation of the

work done by the point load, we find the deflection ζ ∼ FR
4
√
ErEθt2

and hence the

indentation stiffness

kpole
0 =

F

ζ
∼ 4

√
ErEθt

2

R
, (D.3)

which agrees with Eq. (3.28) up to a factor of two. As this argument explicitly shows,

although the local symmetry at the equator (see 3.3.4) completely breaks down

at the poles, i.e., the two orthogonal directions now become curvilinear and hence

distinguishable, the geometric-mean dependence persists and stems from balancing

the bending and stretching energies.

D.1.2 The Analytical Approach.

Equation (D.3) can also be obtained by solving the EOEs that govern the

deformations of a curvilinearly orthotropic shallow spherical shell. The full nonlinear

EOEs can be found in, for example, Ref. 49. Since we only consider small

deformations due to a point load at the center of the shell, it is reasonable to

linearize these equations and further assume, from a symmetry point of view, that

the deformations of interest are axisymmetric, i.e., do not vary along the azimuthal
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direction. In this case, the governing equations reduce to [57]

Dr ∆ 1√
λ
y(r) +

y(r)

R
= − F

2π

1

r
(D.4, a)

1

Yθ

∆ 1√
λ
ϕ(r)− ϕ(r)

R
= 0, (D.4, b)

where Dr :=
Ert3

12(1−υrθυθr)
is the bending stiffness along the meridional direction, and

Yθ := Eθt the Young’s modulus in the zonal direction. That Dr and Eθ show up in

the governing equations supports our previous observation that shell bending and

stretching occur in different directions. The fields y and ϕ are the first derivative of

the normal displacement w and the Airy stress function Φ, respectively: y := dw
dr
,

and ϕ := dΦ
dr
, where r is the distance away from the pole. The operator ∆ν ≡

d2

dr2
+ 1

r
d
dr

−
(
ν
r

)2
(ν ∈ C) is the Bessel differential operator. It is known that Bessel

functions of the first kind with order ν (denoted by Jν) are its eigenfunctions. This

motivates us to solve Eqs. (D.4) using the Hankel transform.

Hankel transform. Roughly speaking, Hankel transform is like Fourier transform in

polar coordinates and is often used to solve linear axisymmetric differential equations.

The Hankel transform of a well-behaved axisymmetric function f(r) is given by [76]

f̂ν(k) ≡ Hν {f(r)} (k) =
∫ +∞

0

r dr f(r)Jν(kr). (D.5)

The inverse transform is given by

f(r) =

∫ +∞

0

k dk f̂ν(k)Jν(kr). (D.6)
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The Hankel transform of the Bessel operator, ∆ν , is simply −k2, which is

independent of ν. This can be most easily seen by recalling the definition of the

Bessel differential equation:

(
∆ν + k2

)
Jν(kr) = 0. (D.7)

It follows that for an axisymmetric function f(r),

∆ν f(r) = ∆ν

∫ +∞

0

k dk f̂ν(k)Jν(kr) =

∫ +∞

0

k dk
(
−k2f̂ν(k)

)
Jν(kr). (D.8)

It is also straightforward to obtain the Hankel transform of the function 1
r
: by

definition,

Hν

{
1

r

}
(k) =

∫ +∞

0

r dr
1

r
Jν(kr) =

∫ +∞

0

dr Jν(kr) =
1

k

∫ +∞

0

du Jν(u) =
1

k
,

(D.9)

where we have used the fact that for all ν,

∫ +∞

0

dx Jν(x) = 1. (D.10)

The Hankel transform of Eqs. (D.4) is hence

−Drk
2ŷ 1√

λ
(k) +

1

R
ϕ̂ 1√

λ
(k) = − F

2π

1

k
(D.11, a)

− 1

Yθ

k2ϕ̂ 1√
λ
(k)− 1

R
ŷ 1√

λ
(k) = 0. (D.11, b)
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Substituting Eq. (D.11, b) into Eq. (D.11, a) to eliminate ϕ̂ 1√
λ
(k), we get, after

applying the inverse transform,

dw

dr
(r) =: y(r) =

F

2π

∫ +∞

0

dk
k2

Drk
4 +

Yθ

R2

J 1√
λ
(kr). (D.12)

To proceed, we impose the boundary conditions w(0) = −ζ and lim
r→+∞

w(r) = 0

which together give

∫ +∞

0

dr
dw

dr
(r) = lim

r→+∞
w(r)− w(0) = ζ. (D.13)

Combining Eqs. (D.12) and (D.13), we finally attain the following relation between

ζ and F :

ζ =

∫ +∞

0

dr
F

2π

∫ +∞

0

dk
k2

Drk
4 +

Yθ

R2

J 1√
λ
(kr)

=
F

2π

∫ +∞

0

dk
k2

Drk
4 +

Yθ

R2

∫ +∞

0

dr J 1√
λ
(kr)

=
F

2π

∫ +∞

0

dk
k

Drk
4 +

Yθ

R2

= F
R

8
√
DrYθ

.

(D.14)

From Eq. (D.14), we can get the indentation stiffness:

k :=
F

ζ
=

8
√
DrYθ

R
=

4
√
ErEθt

2

√
3 (1− υrθυθr)

1

R
(D.15)

(cf. Eq. (3.28)). This proves our claim in the main text (see 3.3.4).
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D.2 Pressurized Orthotropic Spheroids.

Recall the fact that near its poles, a spheroid is locally spherical. Therefore, the

following discussions are centered around curvilinearly orthotropic spherical shells.

Unlike its isotropic counterpart, a curvilinearly orthotropic sphere does not

deform uniformly under a constant pressure. This can be seen by substituting the

membrane solution 



ym(r) = 0,

ϕm(r) =
1

2
pRr,

(D.16)

into the nonlinear shallow-shell equations [57]

Dr ∆ 1√
λ
y(r)− ϕ(r)

r

(
y(r)− r

R

)
=

1

2
pr (D.17, a)

1

Yθ

∆ 1√
λ
ϕ(r) +

1

2

y(r)

r

(
y(r)− 2r

R

)
= 0. (D.17, b)

Equation (D.17, b) gives
(
1− 1

λ

)
pR
Yθ

= 0 which only holds in the isotropic case

(λ = 1). Moreover, we notice that
(
1− 1

λ

)
pR
Yθ

switches its sign at λ = 1. The

presence of this term illustrates the fact that upon being pressurized, spheres with

a curvilinear orthotropy pattern deform differently depending on whether Er > Eθ

or the other way around [56, 71]. Therefore, the term cannot be ignored in general,

and linearization using the membrane solution thus generally fails for these shells.

In fact, as Reissner has demonstrated, for pressurized curvilinearly orthotropic

spheres, both the displacement field w(r) and the Airy stress function Φ(r) scale as

r
1√
λ
+1

near the origin [71]. As a result, the actual stress, ∥σ(r)∥ t ∼ Φ(r)
r2

will have the

power-law behavior r
1√
λ
−1
; that is, depending on the magnitude of λ, the stress at

the poles will either vanish (λ < 1) or explode (λ > 1). This stress singularity makes
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it challenging to derive the indentation stiffness and buckling pressure of pressurized

curvilinearly orthotropic spheres in general.

However, for sufficiently low pressures, such that the approximation
(
1− 1

λ

)
pR
Yθ

≈

0 can be safely made, following the same procedure as in the pressureless case, we

obtain

ζ =
F

2π

∫ +∞

0

dk
k

Drk
4 +

pR

2
k2 +

Yθ

R2

=
F

4π

√
R2

DrYθ

∫ +∞

0

du

u2 + 2ηs,yu+ 1

= F
R

8
√
DrYθ

1− 2

π
arcsin ηs,y

√
1− η2s,y

,

(D.18)

where ηs,y :=
pR2

4
√
DrYθ

. Read this again. Add a sentence.
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APPENDIX E

DERIVING THE ZERO-PRESSURE INDENTATION STIFFNESS OF LONG

CYLINDERS

In this appendix, we will combine Yuan’s approach [16] and the rescaling

transformation to solve the linearized shallow-shell equation for long cylindrical

shells:

D′ £2w(x, s) +
Y ′

R2

∂4w(x, s)

∂x4 = £ q(x, s) (E.1, a)

(see Eq. (C.6)) or equivalently,

D′ £′2w′(x′, s′) +
Y ′

R′2
∂4w′(x′, s′)

∂x′4 = £′ q′(x′, s′). (E.1, b)

E.1 Yuan’s Approach

In short, the approach by Yuan has two main distinctive features compared with

our analysis in Ref. 4. First, along the circumferential direction (associated with the

coordinate s), a Fourier series defined on (−πR, πR], instead of a Fourier transform,

was used: More specifically, a well-behaved function f(x, s) can be written as

f(x, s) =

∫ +∞

−∞

dk

2π
f̂(k, s)eikx =

∫ +∞

−∞

dk

2π

∞∑

n=−∞
f̂n(k)e

in s
R eikx. (E.2)

Furthermore, if the function f(x, s) is even in both x and s, the above expression

reduces to

f(x, s) = 2

∫ +∞

0

dk

2π

[
1

2
f̂0(k) +

∞∑

n=1

f̂n(k) cos
(
n
s

R

)]
cos kx, (E.3)
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where we have implicitly used the fact that the Fourier transform of an even function

is even. For a separable function, i.e., f(x, s) = X(x)S(s), Eq. (E.3) becomes

f(x, s) = 2

[
1

2
S0 +

∞∑

n=1

Sn cos
(
n
s

R

)]∫ +∞

0

dk

2π
X̂(k) cos kx. (E.4)

Second, Yuan did not use the Dirac delta function to model a concentrated load;

instead, he first considered a uniformly distributed load over a rectangular region

and then shrank the size of the region.

E.2 The Rescaling Transformation

We can thus write

w(x, s) =

∫ +∞

0

dk

2π

[
ŵ0(k) +

∞∑

n=1

2ŵn(k) cos
(
n
s

R

)]
cos kx

=
∞∑

n=0

[
(2− δ0n)

∫ +∞

0

dk

2π
ŵn(k) cos kx cos

(
n
s

R

)] (E.5)

since the normal displacement field w(x, s) must be an even function in both x and s

from a symmetry point of view. The constant load is applied on a rectangular region

that is symmetric with respect to the origin; therefore, q(x, s) is even and separable:

q(x, s) = X(x)Q(s), and

q(x, s) =
∞∑

n=0

[
(2− δ0n)

∫ +∞

0

dk

2π
X̂(k)Qn cos kx cos

(
n
s

R

)]
. (E.6)
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Letting the region be R = {(x, s) ∈ [−ϵ, ϵ]× [−c, c]}, we can then determine X̂(k)

and Qn. By definition,

X̂(k) =

∫ +∞

−∞
dxX(x)e−ikx = 2

∫ ϵ

0

dx cos kx = 2ϵ sinc kϵ, (E.7)

and

Qn =
2

πR

∫ πR

0

dsQ(s) cos
(
n
s

R

)
=

2

πR

∫ c

0

ds q0 cos
(
n
s

R

)
=

2

π

c

R
sinc

(
n
c

R

)
q0.

(E.8)

The intensity of the load is denoted by q0, and the total force is hence F = q0A =

4q0cϵ. In the limits of kϵ → 0 and n c
R
→ 0,

X̂(k) ≈ 2ϵ, and Qn ≈ 2

π

c

R
q0. (E.9)

Remark. In Yuan’s original formulation of the problem, there is an additional

concentrated load being applied at the bottom of the cylinder (s = ±πR). As a

consequence, when computing the Fourier coefficients Qn for the original system, an

extra term,

2

πR

∫ πR

πR−c

dsQ(s) cos
(
n
s

R

)
= (−1)nQn, (E.10)

needs to be added. This leads to vanishing of the odd terms in the Fourier series.

Therefore, for a point load,

q(x, s) ≈ F

πR

∞∑

n=0

[
(2− δ0n)

∫ +∞

0

dk

2π
cos kx cos

(
n
s

R

)]
. (E.11)
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Substituting Eqs. (E.5) and (E.11) into Eq. (E.1, a), we obtain, after some algebra,

ŵn(k) =
F

πR

(
4
√
λk2 +

1
4
√
λ

n2

R2

)2

D′
(

4
√
λk2 +

1
4
√
λ

n2

R2

)4

+
Y ′

R2
k4

. (E.12)

We now apply the rescaling transformation in Fourier space: R 7→ R′ = 4
√
λR,

k 7→ k′ = 8
√
λk and n 7→ n′ = 8

√
λn; Eq. (E.12) then reduces to

ŵn(k) =
4
√
λ
1

π

FR′3

D′

(
k̃′2 + n′2

)2

(
k̃′2 + n′2

)4
+ γ′k̃′4

, (E.13)

where k̃′ := R′k′ = 8
√
λ3Rk, which is dimensionless, and γ′ := Y ′R′2

D′ is the Föppl-

von Kármán number for the rescaled system. We note that Eq. (E.13) can also be

attained by directly substituting into Eq. (E.1, b) Fourier series and transforms that

are written in terms of the rescaled variables, e.g.,

f(x′, s′) =
1
8
√
λ

∫ +∞

−∞

dk′

2π

∞∑

n=−∞
f̂n′(k′)ein

′ s′
R′ eik

′x′
. (E.14)

From Eq. (E.13), we can get the following expression for the inverse of the indentation

stiffness:

1

k0
cyl(λ)

:=
w(0, 0)

F
=

1

2π2

8
√
λ
R′2

D′

∞∑

n=0

[
(2− δ0n)

∫ +∞

0

du
(u2 + n′2)

2

(u2 + n′2)4 + γ′u4

]

=
1

2π2

8
√
λ
R′2

D′

∫ +∞

0

du

u4 + γ′ +
1

π2

8
√
λ
R′2

D′

∞∑

n=1

∫ +∞

0

du
(u2 + n′2)

2

(u2 + n′2)4 + γ′u4
.

(E.15)
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Remark. Notice that the n = 0 mode does not lead to a divergence, unlike the

situation in Ref. 4 where the stiffness was written in terms of the following double

integral:

1

k0
cyl(λ = 1)

=
1

2π2

R√
DY

∫ π
2

0

dθ

∫ +∞

0

du

u2 + cos4 θ
, (E.16)

which diverges in the infrared limit (u → 0). As Yuan found, the contribution of the

n = 0 mode to the indentation stiffness is in fact negligible compared to other modes;

as a result, the first term on the right-hand side of Eq. (E.15) can be neglected.

Equation (E.15) takes the same form as Eq. (10) in Ref. 16, except for an extra

factor of 1
2

8
√
λ. We can hence directly apply Yuan’s final result, Eq. (17), without

actually evaluating the definite integrals in Eq. (E.15):

1

k0
cyl(λ)

≈ 1

2π
8
√
λ
3
√
2 (1− υ2

eff)

Eeff

R′2

t3

∞∑

n=1

1

n′3

√
1 + Ξn

Ξn

, (E.17)

where Ξ2
n := 1 +

3(1−υ2
eff)

4n′4
(
R′
t

)2
= 1 +

3(1−υ2
eff)

4n4

(
R
t

)2
. After some rearrangements, we

finally get Eq. (3.29).
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APPENDIX F

EVALUATING THE STIFFNESS INTEGRAL

In this appendix, we will show the details how we evaluated the definite integrals

in Eqs. (3.32) and (3.36). We will start with the latter, which is a special case of the

former.

F.1 Equation (3.36)

Setting β0 = 1 (and hence β′ = 1 and β′
λ = 2

√
λ− 1) in Eq. (3.32) gives

1

kcyl(ηs,y(λ), λ)
:=

1

8π2

√
R′2

D′Y ′I1(ηs,y(λ), λ), (F.1)

where R′ = 4
√
λR with R the radius of cylinders, and

I1(ηs,y(λ), λ) :=

∫ 2π

0

dφ

∫ +∞

0

du

u2 + 2ηs,y
(
1 + β′

λ sin
2 φ
)
u+ cos4 φ

= 4

∫ π
2

0

dφ

∫ +∞

0

du

u2 + 2ηs,y (1 + β′
λ cos

2 φ)u+ sin4 φ
;

(F.2)

we have used the fact

∫ 2π

0

dφf(cos2 φ) = 4

∫ π
2

0

dφf(sin2 φ). (F.3)
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To evaluate I1(ηs,y(λ), λ), we make two changes of variables: s = u csc2 φ and t =

cotφ; as a result,

I1(ηs,y(λ), λ) = 4

∫ π
2

0

dφ
csc4 φ

csc4 φ

∫ +∞

0

du

u2 + 2ηs,y (1 + β′
λ cos

2 φ)u+ sin4 φ

= 4

∫ π
2

0

dφ csc2 φ

∫ +∞

0

d(u csc2 φ)

(u csc2 φ)2 + 2ηs,y (csc2 φ+ β′
λ cot

2 φ) (u csc2 φ) + 1

= 4

∫ +∞

0

∫ +∞

0

ds dt

s2 + 2ηs,y

(
1 + 2

√
λt2
)
s+ 1

,

(F.4)

where in the last step, we changed the order of integration. We notice at this point

that we can easily “tease out” the integral’s explicit λ-dependence by making another

change of variables v = 2
√
ηs,y

4
√
λt:

I1(ηs,y(λ), λ) =
2

√
ηs,y

4
√
λ

∫ +∞

0

∫ +∞

0

ds dv

sv2 + (s2 + 2ηs,ys+ 1)
. (F.5)

It is now straightforward to evaluate I1(ηs,y(λ), λ):

I1(ηs,y(λ), λ) =
2

√
ηs,y

4
√
λ

∫ +∞

0

ds

s

∫ +∞

0

dv

v2 +

(√
s2 + 2ηs,ys+ 1

s

)2

=
π

√
ηs,y

4
√
λ

∫ +∞

0

ds√
s

1√
s2 + 2ηs,ys+ 1

=
2π

√
ηs,y

4
√
λ

∫ +∞

0

dx√
x4 + 2ηs,yx2 + 1

.

(F.6)
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The last integral in the equation above can be expressed in terms of the complete

elliptic integral of the first kind [77]:

∫ +∞

0

dx√
x4 + 2ηs,yx2 + 1

=

∫ +∞

0

dx√
(x2 + 1)2 − 2(1− ηs,y)x2

=

∫ π
2

0

d(tan θ)√
(tan2 θ + 1)2 − 2(1− ηs,y) tan

2 θ
=

∫ π
2

0

sec2 θ dθ√
sec4 θ − 2(1− ηs,y) tan

2 θ

=

∫ π
2

0

dθ√
1− 1

2
(1− ηs,y) sin

2 2θ

=
1

2

∫ π

0

dϕ√
1− 1

2
(1− ηs,y) sin

2 ϕ

= K

(
1

2
(1− ηs,y)

)
;

(F.7)

to arrive at the last step, we have used

∫ π

0

dϕ g(sin2 ϕ) = 2

∫ π
2

0

dϕ g(sin2 ϕ). (F.8)

After some more algebra, we obtain Eq. (3.36).

Remark. By changing the order of integration, like what we did in Ref. 4, we get

the following identity for the complete elliptic integral of the first kind:

K (x) =

√
2

π

∫ +∞

0

du
arccos (u2 + 1− 2x)√
1− (u2 + 1− 2x)2

. (F.9)

F.2 Equation (3.32)

We now return to the more general case, Eq. (3.32); the way of evaluating the

integral is essentially the same, but the changes of variables involved will require

slightly more thoughts.
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We start by rewriting the integral in Eq. (3.32):

I(ηs,y(λ), β0, λ) :=

∫ 2π

0

dφ

∫ +∞

0

du

u2 + 2ηs,y
(
1 + β′

λ sin
2 φ
)
u+

(
1− β′ sin2 φ

)2

= 4

∫ π
2

0

dφ

∫ +∞

0

du

u2 + 2ηs,y (1 + β′
λ cos

2 φ)u+ (1− β′ cos2 φ)2

= 4

∫ π
2

0

dφ

1− β′ cos2 φ

∫ +∞

0

dv

v2 + 2ηs,y

(
1 + β′

λ cos
2 φ

1− β′ cos2 φ

)
v + 1

,

(F.10)

where v := u
1−β′ cos2 φ . Realizing

d

dφ
arctan

(
1√

1− β′ tanφ

)
=
√

1− β′ 1

1− β′ cos2 φ
, (F.11)

we make the change of variables

s = arctan

(
1√

1− β′ tanφ

)
. (F.12)

As a result, we can make the following simplification:

1 + β′
λ cos

2 φ

1− β′ cos2 φ
= 1 +

β′ + β′
λ

sec2 φ− β′

= 1 +
β′ + β′

λ

1 + (1− β′) tan2 s− β′ = 1 +
β′ + β′

λ

1− β′ cos2 s := 1 + α′ cos2 s,

(F.13)

where

α′ :=
β′ + β′

λ

1− β′ =
2β0

1− β0

=
1 + β0

1− β0

− 1 := α− 1, (F.14)
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a combination of parameters, which is independent of λ; accordingly, with the new

integration variable,

I(ηs,y(λ), β0, λ) =
4√

1− β′

∫ π
2

0

ds

∫ +∞

0

dv

v2 + 2ηs,y (1 + α′ cos2 s) v + 1
. (F.15)

We notice that all the explicit λ-dependence is in the prefactor 4√
1−β′ .

Changing the order of integration, we first evaluate the s-integral. After some

algebra, we arrive at

I(ηs,y(λ), β0, λ) =
2π√
1− β′

∫ +∞

0

dv

v2 + 2ηs,yv + 1

1√
1 +

2α′ηs,yv

v2 + 2ηs,yv + 1

, (F.16)

where we have used

∫ π
2

0

ds

A+B cos2 s
=

π

2

1√
A

1√
A+B

. (F.17)

We notice that the term
(
1 + 2α′ηs,yv

v2+2ηs,yv+1

)− 1
2
contains all the non-trivial geometric

dependence: Setting β0 = 0 (β′ = 1−
√
λ and α′ = 0) gives

I(ηs,y(λ), β0 = 0, λ) =
2π
4
√
λ

∫ +∞

0

dv

v2 + 2ηs,yv + 1
(F.18)

which is the familiar integral corresponding to the stiffness of a spherical shell.

Realizing

d

dv
arctan

(
v + ηs,y√
1− η2s,y

)
=
√

1− η2s,y
1

v2 + 2ηs,yv + 1
, (F.19)
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we make the change of variables

t = arctan

(
v + ηs,y√
1− η2s,y

)
. (F.20)

As a consequence, we can rewrite the term just mentioned, which is related to

geometric anisotropy, in terms of t:

v

v2 + 2ηs,yv + 1
=

√
1− η2s,y tan t− ηs,y√

1− η2s,y

(
dv

dt
(t)

)−1

=

√
1− η2s,y tan t− ηs,y

(1− η2s,y) sec
2 t

= − 1

2(1− η2s,y)

(
−
√
1− η2s,y sin 2t+ ηs,y cos 2t+ ηs,y

)

= − 1

2(1− η2s,y)
[cos (2t+ arccos ηs,y) + ηs,y] .

(F.21)

It follows that in terms of the new integration variable,

I(ηs,y(λ), β0, λ) =
2π√
1− β′

1√
1− η2s,y

∫ π
2

arcsin ηs,y

dt√
1− α′ ηs,y

1− η2s,y
[cos (2t+ arccos ηs,y) + ηs,y]

=
π√

1− β′
1√

1− η2s,y

∫ π+arccos ηs,y

π−arccos ηs,y

dθ√
1− α′ η2s,y

1− η2s,y
− α′ ηs,y

1− η2s,y
cos θ

,

(F.22)

where we used the following identities:

arctan

(
ηs,y√
1− η2s,y

)
= arcsin ηs,y and arccos ηs,y + arcsin ηs,y =

π

2
, (F.23)

and we also changed the integration variable from t to θ = 2t+arccos ηs,y. Performing

another change of variables ϕ = θ − π, we can rewrite I(ηs,y(λ), β0, λ) as follows:
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Factoring out the term
√

1− α′ η2s,y
1−η2s,y

from the denominator of the integrand,

I(ηs,y(λ), β0, λ) =
2π√
1− β′

1√
1− αη2s,y

∫ arccos ηs,y

0

dϕ√
1 +

α′ηs,y
1− αη2s,y

cosϕ

; (F.24)

recall α = α′ + 1. Using the identity

∫ ϑ

0

dϕ√
1 + A cosϕ

=
2√

1 + A
F

(
1

2
ϑ

∣∣∣∣
2A

1 + A

)
, (F.25)

we finally get, after some rewriting, Eq. (3.33).
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APPENDIX G

G.1 Simulation methods: shell indentation (COMSOL)

In this appendix, we summarize how we implemented finite element simulations

of the indentation studies (3.3.4) using COMSOL Multiphysics. We start with how

we built, within COMSOL, shells that are made of an orthotropic material.

G.1.1 Orthotropic Materials

It is known that a three-dimensional orthotropic material has nine independent

elastic constants; these include three Young’s moduli (E1, E2 and E3), three Poisson’s

ratios (υ12, υ13 and υ23) and three shear moduli (G12, G13 and G23) [49]. The

nine parameters have to satisfy constraints that stem from positive definiteness

of the corresponding stiffness tensor. This makes it challenging to choose sets of

these parameters which can guarantee stable simulations. We therefore followed the

presentation by Li and Barbič for simulating orthotropic materials [78]. The essence

of their approach is summarized below.

In some sense, Li and Barbič consider a subclass of orthotropic materials which

can be characterized with only four independent parameters:
{
E1, λ ≡ λ12 :=

E1

E2
, λ13 :=

E1

E3
, υeff

}
. The last parameter υeff is related to the three Poisson’s ratios in

the following way:

υeff :=
√
υ12υ21

!
=

√
υ13υ31

!
=

√
υ23υ32, (G.1)

which implies (using the facts
υji
Ei

=
υij
Ej
) that

υij = υeff

√
Ej

Ei

(i, j ∈ {1, 2, 3}). (G.2)
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The three shear moduli are given by the corresponding Huber form:

Gij
!
=

√
EiEj

2(1 + υeff)
. (G.3)

The positive definiteness constraints require that E1, λ, λ13 ∈ R>0, and υeff ∈

(−1, 1
2
].1

In our simulations, we fixed the value of E1 and υeff to be 70 GPa and 0.3,

respectively. We also fixed the value of λ13 after having verified that transverse shear

deformations were indeed negligible in our studies. We chose λ13
!
= 2. Therefore, in

our simulations, there was really only one free parameter that needed tuning to vary

the degree of a thin shell’s material anisotropy, namely λ.

G.1.2 Shells with Material Orthotropy and Boundary Conditions

The 3D Component feature was first used to generate spheroidal and cylindrical

surfaces. We then used the Shell module to turn these surfaces into actual shells.

G.1.2.1 Spheroidal Shells. A spheroid is an ellipsoid of revolution. To

parametrize a spheroid, x2

a2
+ y2+z2

b2
= 1, two parameters, a and b, are needed. In

our simulations, we fixed b = 1 m and set a
!
= b√

1−β
. We varied the asphericity of a

spheroid by changing β (β ∈ (−1, 1)). The thickness of the spheroidal shell (denoted

by t) was also fixed during each simulation. Since we were simulating thin shells, we

required that b
t
≳ 50.

Material orthotropy was implemented using the Material module. Orientations

of material orthotropy were conveniently set, by default in COMSOL, to coincide with

1It is worthwhile mentioning that the isotropic Poisson’s ratio υiso has the same range as υeff :
υiso ∈ (−1, 1

2 ]. This is indeed the key motivation for introducing υeff .
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the shell’s Global coordinate system, which can be found under Shell/Linear

Elastic Material/Shell Local System/Coordinate System Selection/Coordinate

system.

We used the boundary conditions Rigid Motion Suppression for All

boundaries and No Rotation on the Domain which is the intersection of the

spheroidal surface and the xy plane, i.e., the ellipse x2

a2
+ y2

b2
= 1. To simulate an

internal pressure, a negative Face Load was applied. Also, to ensure force balance,

one Point Load with a negative magnitude was applied at the top of the shell,

(0, 0, b), and a positive one at the bottom, (0, 0,−b). The absolute magnitudes of

the two loads were identical and small, such that the resulting normal displacement,

shell.w, was much less than the shell thickness t.

G.1.2.2 Cylindrical Shells. The radius of the cylindrical shells (denoted by

R) was fixed to be 1 m. As for spheroidal shells, we required that R
t

≳ 50,

where t again denotes the shell thickness. Because COMSOL was not able to simulate

infinite cylinders, we set the length of the shells to be at least greater than 10R
√

R
t
,

where R
√

R
t
is the characteristic deformation length scale for indenting a cylinder

at zero pressure [? ]; we also fixed the two ends of a cylinder by imposing the

boundary condition Fixed Constraint. Like before, Rigid Motion Suppression

was again imposed for All boundaries, and No Rotation for the Domain which is

the intersection of the xy plane with the cylinders.

G.1.2.3 Miscellaneous. We used the Physics-controlled mesh, and the mesh

size was set to be Extremely fine to ensure accurate simulation results.
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APPENDIX H

H.1 Simulation methods: buckling of orthotropic spheres

The buckling pressure of orthotropic spherical shells, Fig. 3.5, was determined

with finite element simulations. As the implementation in C++ is based on previous

work [53, 79, 80, 81], we summarize only the main aspects here.

Denote by Ω ⊂ R3 the middle surface of the thin shell with thickness t. We now

distinguish between the stress-free (“reference”) configuration denoted by barred

symbols, and the current, deformed configuration, denoted by bare symbols. Thus,

Ω ⊂ R3 is the middle surface of the unstrained shell (a sphere in the case considered

here). We describe the shell in a total Lagrangian formulation, with x(x1, x2) and

x(x1, x2) curvilinear parameterizations of Ω and Ω, respectively. The tangent spaces

of Ω and Ω are then spanned by

aα(x
1, x2) = x,α =

∂x

∂xα
, aα(x

1, x2) = x,α =
∂x

∂xα
, (H.1)

and by virtue of the Kirchhoff assumption, the shell directors are given by the unit

surface normals

a3 =
a1 × a2

∥a1 × a2∥
, a3 =

a1 × a2

∥a1 × a2∥
. (H.2)

To define the membrane and bending strains, we require the covariant components

of the metric tensor,

aαβ = aα · aβ, aαβ = aα · aβ, (H.3)
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and those of the shape tensor,

bαβ = a3 · aα,β, bαβ = a3 · aα,β. (H.4)

Since the thin shell is in a state of locally plane stress, the strain tensors for stretching

and bending with respect to the curvilinear coordinates can be expressed in Voigt

notation as

α =




α11

α22

2α12




=
1

2




a11 − a11

a22 − a22

2(a12 − a12)




, β =




β11

β22

2β12




=




b11 − b11

b22 − b22

2(b12 − b12)




. (H.5)

We now transform these into an orthonormal basis of the tangent space {e1, e2},

with respect to which the material orthotropy is expressed, using a transformation

matrix T [81]:

ε = Tα, κ = Tβ (H.6)

with

T =




t211 t221 t11t21

t212 t222 t12t22

2t11t12 2t21t22 t11t22 + t12t21




, tαβ = aα · eβ. (H.7)

For a spherical shell, we define the material coordinate system aligned with the polar

and azimuthal directions:

e1 =
x

∥x∥ × e2, e2 =
ẑ× x

∥ẑ× x∥ (H.8)

where ẑ = (0, 0, 1)⊤.
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With these definitions, the potential energy of a pressurized, orthotropic thin

shell can be expressed as [81]

U =

∫

Ω

1

2

(
tε⊤Cε+

t3

12
κ⊤Cκ

)
− p a3 · (x− x) dΩ (H.9)

where p is the internal-to-external pressure difference, dΩ = ∥a1 × a2∥ dx1dx2 the

reference area element, and

C =




E1/(1− υ12υ21) υ21E1/(1− υ12υ21) 0

υ12E2/(1− υ12υ21) E2/(1− υ12υ21) 0

0 0 G12




(H.10)

the elastic tensor for orthotropic plane stress. To minimize U numerically, we

discretized the spherical shell into a triangulated mesh that was built by recursively

subdividing a regular icosahedron five times, resulting in a so-called “icosphere”

consisting of 20480 triangles and 10242 vertices. 10% of the average edge length

was added to each vertex position on the sphere as random noise to break the mesh

symmetry. Using C1-conforming Loop subdivision surface shape functions [82], the

middle surface can then be expressed as linear combinations of the shape functions

NI with the nodal positions xI as weights:

x(x1, x2) =
12∑

I=1

xINI , x(x1, x2) =
12∑

I=1

xINI . (H.11)

(Note that for evaluation of the surface on patches with nodes of valence other than

six, a recursive procedure is needed [82].) With this finite element discretization, and
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using a single Gauss point per triangle, the nodal forces can be assembled as [81]

f I = −
∑

e

{(
tM⊤

I Ĉα+
t3

12
B⊤

I Ĉβ − pNI a3

) ∥a1 × a2∥
2

}

e

, (H.12)

where the sum runs over all triangles e within the local support of NI , {·}e denotes

evaluation at the barycenter of e,

Ĉ = T⊤CT (H.13)

is the elastic tensor transformed to the material frame, andMI andBI are membrane

and bending matrices, whose transpose are column-wise given by [81]

M⊤
I =

(
NI,1a1 NI,2a2 NI,1a2 +NI,2a1

)
(H.14)

B⊤
I =

(
bI
11 bI

22 2bI
12

)
(H.15)

with

bI
αβ =

1

∥a1 × a2∥
(aα,β − bαβ a3)× (NI,1a2 −NI,2a1)−NI,αβa3. (H.16)

With the nodal forces, we solved Newton’s equations of motion with far-

subcritical viscous damping added, using a Newmark predictor-corrector method

[81]. To determine the critical pressure, we slowly ramped up the applied pressure p

in the simulations until the shell collapsed.
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techniques for masonry domes: A review. International Journal of Space
Structures, 38(1):30–39, 2023. doi: 10.1177/09560599221126652.

[52] Kenneth P. Buchert. Buckling of doubly curved orthotropic shells. University of
Missouri, Engineering Experiment Station, 1965.

[53] Gautam Munglani, Falk K. Wittel, Roman Vetter, Filippo Bianchi, and Hans J.
Herrmann. Collapse of orthotropic spherical shells. Physical Review Letters,
123:58002, 2019. ISSN 0031-9007. doi: 10.1103/PhysRevLett.123.058002.

[54] K. A. Seffen. Morphing bistable orthotropic elliptical shallow shells.
Proceedings of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 463(2077), 2007. doi: 10.1098/rspa.2006.1750.

[55] S Vidoli and C Maurini. Tristability of thin orthotropic shells with uniform
initial curvature. Proceedings of the Royal Society A: Mathematical, Physical
and Engineering Sciences, 464(2099):2949–2966, 2008. doi:
10.1098/rspa.2008.0094. URL
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.2008.0094.

[56] P. M. Sobota and K. A. Seffen. Bistable polar-orthotropic shallow shells. Royal
Society Open Science, 6(8), 2019. doi: 10.1098/rsos.190888.

137

https://royalsocietypublishing.org/doi/abs/10.1098/rspa.2008.0094


[57] P. C. Dumir, M. L. Gandhi, and Y. Nath. Axisymmetric static and dynamic
buckling of orthotropic shallow spherical caps with flexible supports. Acta
Mechanica, 52(1), 1984. doi: 10.1007/BF01175967.

[58] Herbert Becker. Pressure stability of orthotropic prolate spheroids. Journal of
Ship Research, 12(03):163–164, 09 1968. ISSN 0022-4502. doi:
10.5957/jsr.1968.12.3.163. URL
https://doi.org/10.5957/jsr.1968.12.3.163.

[59] S. Timoshenko and S. Woinowsky-Krieger. Theory of Plates and Shells.
McGraw-Hill Book Company, 1959.

[60] V. Panc. Theories of Elastic Plates. Noordhoff International, The Netherlands,
1975.

[61] Dominic Vella, Amin Ajdari, Ashkan Vaziri, and Arezki Boudaoud. Indentation
of Ellipsoidal and Cylindrical Elastic Shells. Physical Review Letters, 109
(14gain):144302, 2012. ISSN 0031-9007. doi: 10.1103/PhysRevLett.109.144302.

[62] B. M. Lempriere. Poisson’s ratio in orthotropic materials. AIAA Journal, 6
(11):2226–2227, 1968. doi: 10.2514/3.4974.

[63] M. T. Huber. The theory of crosswise reinforced ferroconcrete slabs and its
applications to various important constructional problems involving rectangular
slabs. Bauingenieur, 4:354, 1923.

[64] Shun Cheng and F. B. He. Theory of orthotropic and composite cylindrical
shells, accurate and simple fourth-order governing equations. J. Appl. Mech.,
51:736–744, 1984. doi: 10.1115/1.3167718.

[65] Maurizio Paschero and Michael W. Hyer. Axial buckling of an orthotropic
circular cylinder: Application to orthogrid concept. International Journal of
Solids and Structures, 46(10):2151–2171, 2009. ISSN 0020-7683. doi:
https://doi.org/10.1016/j.ijsolstr.2008.08.033. Special Issue in Honor of
Professor Liviu Librescu.

[66] Jayson Paulose and David R. Nelson. Buckling pathways in spherical shells
with soft spots. Soft Matter, 9:8227–8245, 2013. doi: 10.1039/c3sm50719j.

[67] C. Y. Wang, C. Q. Ru, and A. Mioduchowski. Orthotropic elastic shell model
for buckling of microtubules. Phys. Rev. E, 74:052901, Nov 2006. doi:
10.1103/PhysRevE.74.052901. URL
https://link.aps.org/doi/10.1103/PhysRevE.74.052901.

[68] Manfredo P. do Carmo. Differential Geometry of Curves and Surfaces.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1st ed. edition, 1976.

138

https://doi.org/10.5957/jsr.1968.12.3.163
https://link.aps.org/doi/10.1103/PhysRevE.74.052901


[69] Sujit S. Datta, Shin-Hyun Kim, Jayson Paulose, Alireza Abbaspourrad,
David R. Nelson, and David A. Weitz. Delayed Buckling and Guided Folding of
Inhomogeneous Capsules. Physical Review Letters, 109(13):134302, 2012. ISSN
0031-9007. doi: 10.1103/PhysRevLett.109.134302.

[70] C. R. Steele and R. F. Hartung. Symmetric Loading of Orthotropic Shells of
Revolution. Journal of Applied Mechanics, 32(2):337–345, 06 1965.

[71] Eric Reissner. Symmetric bending of shallow shells of revolution. Journal of
Mathematics and Mechanics, 7(2), 1958.

[72] Petr E. Tovstik and Andrei L. Smirnov. Asymptotic Methods in the Buckling
Theory of Elastic Shells. World Scientific Publishing Co. Pte. Ltd., Singapore,
2001.

[73] T. Schneider and A. Schmidt. Dimensional crossover scaling in the layered
xy-model and 4He films. Journal of the Physical Society of Japan, 61(7), 1992.
doi: 10.1143/JPSJ.61.2169.

[74] Aditi Chakrabarti, Thomas C. T. Michaels, Sifan Yin, Eric Sun, and
L. Mahadevan. The cusp of an apple. Nature Physics, 17(10):1125–1129, 2021.
ISSN 1745-2481. doi: 10.1038/s41567-021-01335-8.

[75] M. P. Nemeth. Nondimensional parameters and equations for buckling of
anisotropic shallow shells. Journal of Applied Mechanics, 61(3), 1994. doi:
10.1115/1.2901511.

[76] Robert Piessens. The hankel transform. In Alexander D. Poularikas, editor,
The Transforms and Applications Handbook: Second Edition. CRC Press LLC,
Boca Raton, Florida, 2nd ed. edition, 2000.

[77] I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series, and Products.
Academic Press, San Diego, California, 5th ed. edition, 1994.
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