Skip to content

Research

The Hutchison lab focuses on molecular-level design and synthesis of functional surface coatings and nanomaterials. Through a combination of synthetic chemistry and state-of-the-art surface and nanoscale characterization techniques, we are able to discover new materials properties that can be optimized for a wide range of applications. We design structures to exhibit a desired function and test the efficacy of the new materials for specific applications (such as electronic and optical devices, catalysts and sensors). To prepare functional nanostructures and extended materials we synthesize functionalized organic and inorganic chemical building blocks that are designed to assemble into organized structures such as films, lines or devices. Our designs for new processes and materials draw heavily on the principles of environmentally-friendly or green chemistry.

Greener Nanoscience—High performance, greener nanomaterials and nanomanufacturing.
Many applications in nanoscience, ranging from those in medicine to nanoelectronics, will make use of specifically functionalized nanoparticles and/or nanoparticle arrays. We investigate new synthetic methods that permit us to tune the properties of nanoparticles and develop more efficient, greener approaches to nanoparticle synthesis/manufacture. Our diverse libraries of nanoparticles are being used to assess the physical and biological properties of these new materials with the aim of applying this knowledge to design effective and safe materials. We also develop methods of nanofabrication based upon the assembly of functionalized nanoparticles. Two examples of applications of these assemblies are the bottom up assembly of heterogeneous catalysts and biomolecular nanolithography, a method that involves self-assembly of nanoparticles onto biopolymeric (DNA) scaffolds to form lines and more complex patterns for the generation of molecularly integrated nanocircuits as a higher performance (and greener) approach in the microelectronics industry.

Conformationally Preorganized Malonamides as Ligands and Materials for F-Block Ion Chemistry
Designing effective metal ion receptors is an important challenge in inorganic and supramolecular chemistry. In addition to improving our understanding of ion-receptor interactions, such studies lead to new receptors that are useful in applications that involve sensing, separating, sequestering, and delivering metal ions. By “preorganizing” a malonamide ligand so that the donor groups are ideally positioned for binding, a 10 million-fold enhancement in binding for f-block ions is achieved. We are exploring the coordination chemistry of this new ligand class and using the members of this class as building blocks for the preparation of functional materials, including membrane-based separations, ion-sensitive surfaces, polymeric ion sequestering agents and sensors.

Functionalized Metal and Oxide Surfaces
Organic thin films on surfaces are important model systems for studying interfacial phenomena and have a number of important applications in fields ranging from materials science to biomedicine. Self-assembled monolayers (SAMs) are formed by adsorption of molecules onto surfaces to yield a single molecular layer. Currently we are designing new adsorbate molecules through which we can systematically control linkages and patterning on metal and oxide surfaces and introduce chemical functionality to control the interactions of nanomaterials and biomolecules with these surfaces.